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Abstract.  The task of estimating an object’s redshift based on phatdcngata is
one of the most important ones in astronomy. This is espgdlad case for quasars.
Common approaches for this regression task are based arsheaighbor search, tem-
plate fitting schemes, or combinations of, e.g, clusterimgjr@gression techniques. As
we show in this work, simple frameworks like k-nearest nbighregression work ex-
tremely well if one considers the overall feature spacet@amg patterns of all objects
with low, middle, and high redshifts). However, such methadturally fail as soon as
only very few or even no training patterns are given in therappate region of the fea-
ture space. In the literature, a wide range of other regyadsichniques can be found.
Among the most popular ones are regularized regressiomshike ridge regression
or support vector regression. In this work, we show that arobthe-box application
of this type of schemes for the whole feature spacefiidit due to the involved com-
putational requirements and the specific properties of #ita dt hand. However, in
contrast to nearest neighbor search schemes, such methotle employed to extrap-
olate, i.e, they can be used to predict redshifts for patteErnew, unseen regions of the
feature space.

1. Introduction

In this work, we describe the use of standard machine learning regressidels in
the context of estimating the redshift gfiasi-stellar radio sources (quasatsased on
photometric dataThe data we use in this work is based on 8tean Digital Sky Sur-
vey(SDSS), which is said to be “one of the most ambitious and influential suivélys
history of astronomy. The corresponding catalog contains photometric data of about
one billion objects, whereas spectroscopic data is only available for algoutillion
objects. The key problem of detecting new, unseen quasars is thedagtaiind-truth
information can only be obtained via time-consuming spectroscopic followbspre
vations. Hence, the appropriate candidates for such more detailedatises have to
be selected only based on the limited information provided by the photometric data.
Many algorithmic schemes have been proposed in the literature that atieess
regression task. Among these approaches are, e.g., artificial netwadrks (Yeche
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et al. 2010), support vector machines Wang et al. (2008), or comlmsadiostandard
clustering and regression schemes (Laurino et al. 2011). As we shtbig imork, sim-

ple regression approaches likenearest neighbor regression (Hastie et al. 2009) yield
excellent models for the overall task which involves the analysis of allaygasith
low, middle, and high redshifts. Further, taking as many as possible datangdttto
account seems to be crucial for this particular task. This renders thet dpplication

of sophisticated schemes like support vector regressifircudt due to the involved
computational requirements. However, the latter class of schemes caafbkimshe
context of extrapolation, i.e., in the context of predicting trends for patteohcovered

by the training data.

2. MachineLearning

For standard regression problem, one is givaaiaing set T= {(X1, V1), ..., (Xn, Yn)} C

RY x R consisting ofpatternsx; € RY with and associatelhbels y € R. The goal of
the learning process is to generateegression modehat predict reasonable labels to
new, unseen patterns that are not contained in the training set (Hadtie@d®). We
will now briefly sketch two well-known learning schemes in this context.

2.1. k-Nearest Neighbor Regression

The k-nearest neighbo(kNN) (Hastie et al. 2009) regression model useskhe N
closest objects from the given set of objects to assign a label to a neat.objere
precisely, the regression modet RY — R is given by

(=1 > W )

X eNk(X)

whereNy(X) denotes thé-nearest neighbors ofe RY in the training seT. To define
closeness, arbitrary metrics can be used. A popular choice is the Euciidec.

2.2. Support Vector Regression

Another well-known regression concept angoport vector regressio(6VR) (Hastie
et al. 2009; Schikopf & Smola 2001) models which are of the form

. 1 )
it Z; maxL(y. (%) +b) + A1, . )
For SVR, the loss function is given hg(y,t) = max(Qly — t| — €) with ¢ € Rpos
(the so-calleck-insensitive loss Plugging in other loss functions in the above task
leads to various other frameworks; using the squarefifgst) = (y — t)?, for instance,
leads to the concept oidge regressionThe spacéHy is ahypothesis spacentaining
functions of the form

f() = aik(, X) (3)
i=1

with coeficientsas, ..., an € R and (positive semidefinitdernel function ki RY x
RY — R. The first term of the above objective measures how well the fundtican



Photometric Redshift Estimation of Quasars: Local versus Global Regnes 3

— 700

T T T T T i — 900
6.0 - L o 6.0 o
| 800 A 600
50 A E4 700 5.0
' < IH4 500
840 1 6 T40 .
z Ll s00 & 1 400
'530 '§30
2~ [1 400 9~ k4 300
N {300 ™
20 20 4 200
4 200 )
1.0 . 1.0 ;
s ! 100 ; : ! 100
v Y ¥ .
0.0 S I I I 1 0 0.0 ) SO I I 1 0
00 10 20 30 40 50 60 00 10 20 30 40 50 60

Zspectroscopic Zspectroscopic

Figure 1. Comparison of thienearest neighbor (left) and the support vector re-
gression (right) model. Both models are tested on all ggagigen in the data set.
Due to computational reasons, the SVR model is only traimeal gelected subset of
patterns.

predict the (real-valued) labels and the second term measures the citynpfethe
model. The parametet determines the tradeffdbetween both objectives. Common
choices for the kernel function are thieear kernel KX, X;) = (X, X;) or the RBF

kernel KX, X;) = expylIX — >?j||2) with user-defined parametgr> 0.

3. Experimental Evaluation

We will now analyze the performance of both regression models for theatasknd.
The labels we use are based on 818SS quasar catalggrovided by Schneider et al.
(2010). As features, we consider all colors from neighbored banrdsg-r, r-i, i-z).
This results in a data set consisting of 1840 patterns ifiR*.

3.1. Standard Redshift Estimation

First, we analysis the performance of both models on the complete data set, Her
the KNN model is based on all patterns, whereas the SVR model (with RBielker

is based on a selected subset of the data containibg62patterns (due to the cubic
runtime needed to train a model). The involved parameters are tuned via &l
validation. Both models are tested on the (remaining) patterns that haveemused

for training the models. The result is depicted in Figure 1. It can be seeththsimple
kNN model exhibits an excellent overall performance. In contrast, tiv®ftine-box
application of the SVR model leads to slightly worse results.

3.2. Looking over the Tea Cup’s Rim

As shown above, the kNN model is well-suited for densely populated regibthe
feature space. However, it cannot predict &eydsfor unseen data. In contrast, SVR
has the potential to provide trends. To investigate this issue, we consigeguasars

with z € [3, 4] for training the models (again, a selected subset is used for SVR). The
remaining patterns are used for testing. For the SVR mode, we considearkarael.

The results are shown in Figure 2. Naturally, the kNN model cannot raayjctrends.
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Figure 2.  The figures show the performances of the kNN (leffithe SVR (right)
models for the extrapolation scenario. Here, the modelsmisetrained on quasars
with redshiftsz € [3, 4]; the final models are then tested on all quasars. It can be
clearly seen that the SVR model is capable of predictingradiree., it can predict
the redshifts of quasars fare [4, 5] even though none of these objects is given in
the training set.

However, the SVR model seems to provide reasonable guesses fortthepanot
covered by the training set.

4. Conclusionsand Outlook

The experimental analysis indicates that kh@earest neighbor regression model work
well for quasars exhibiting a relatively small redshift. Further, due to edatnal re-
strictions, other sophisticated regression schemes like support vegtess@sn cannot
be trained on all data patterns, which leads to a worse performance intexicof the
overall regression task. However, the latter type of models can stigbgbe used to
detect linear structures in the data what paves the way for detecting remargu An
interesting future research direction is the question which (combinatiorfeaif)res
lead to the best prediction performance for such settings. We plan to iratestigs
guestion in near future.
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