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Abstract. The task of estimating an object’s redshift based on photometric data is
one of the most important ones in astronomy. This is especially the case for quasars.
Common approaches for this regression task are based on nearest neighbor search, tem-
plate fitting schemes, or combinations of, e.g, clustering and regression techniques. As
we show in this work, simple frameworks like k-nearest neighbor regression work ex-
tremely well if one considers the overall feature space (containing patterns of all objects
with low, middle, and high redshifts). However, such methods naturally fail as soon as
only very few or even no training patterns are given in the appropriate region of the fea-
ture space. In the literature, a wide range of other regression techniques can be found.
Among the most popular ones are regularized regression schemes like ridge regression
or support vector regression. In this work, we show that an out-of-the-box application
of this type of schemes for the whole feature space is difficult due to the involved com-
putational requirements and the specific properties of the data at hand. However, in
contrast to nearest neighbor search schemes, such methods can be employed to extrap-
olate, i.e, they can be used to predict redshifts for patterns in new, unseen regions of the
feature space.

1. Introduction

In this work, we describe the use of standard machine learning regression models in
the context of estimating the redshift ofquasi-stellar radio sources (quasars)based on
photometric data. The data we use in this work is based on theSloan Digital Sky Sur-
vey(SDSS), which is said to be “one of the most ambitious and influential surveysin the
history of astronomy’.1 The corresponding catalog contains photometric data of about
one billion objects, whereas spectroscopic data is only available for abouttwo million
objects. The key problem of detecting new, unseen quasars is the fact that ground-truth
information can only be obtained via time-consuming spectroscopic follow-up obser-
vations. Hence, the appropriate candidates for such more detailed observations have to
be selected only based on the limited information provided by the photometric data.

Many algorithmic schemes have been proposed in the literature that addressthis
regression task. Among these approaches are, e.g., artificial neural networks (Ỳeche

1http://www.sdss.org
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et al. 2010), support vector machines Wang et al. (2008), or combinations of standard
clustering and regression schemes (Laurino et al. 2011). As we show inthis work, sim-
ple regression approaches likek-nearest neighbor regression (Hastie et al. 2009) yield
excellent models for the overall task which involves the analysis of all quasars with
low, middle, and high redshifts. Further, taking as many as possible data patterns into
account seems to be crucial for this particular task. This renders the direct application
of sophisticated schemes like support vector regression difficult due to the involved
computational requirements. However, the latter class of schemes can be useful in the
context of extrapolation, i.e., in the context of predicting trends for patterns not covered
by the training data.

2. Machine Learning

For standard regression problem, one is given atraining set T= {(~x1, y1), . . . , (~xn, yn)} ⊂
R

d × R consisting ofpatterns~xi ∈ R
d with and associatedlabels yi ∈ R. The goal of

the learning process is to generate aregression modelthat predict reasonable labels to
new, unseen patterns that are not contained in the training set (Hastie et al. 2009). We
will now briefly sketch two well-known learning schemes in this context.

2.1. k-Nearest Neighbor Regression

The k-nearest neighbor(kNN) (Hastie et al. 2009) regression model uses thek ∈ N

closest objects from the given set of objects to assign a label to a new object. More
precisely, the regression modelf : Rd → R is given by

f (~x) =
1
k

∑

~xi∈Nk(~x)

yi , (1)

whereNk(~x) denotes thek-nearest neighbors of~x ∈ Rd in the training setT. To define
closeness, arbitrary metrics can be used. A popular choice is the Euclidean metric.

2.2. Support Vector Regression

Another well-known regression concept aresupport vector regression(SVR) (Hastie
et al. 2009; Scḧolkopf & Smola 2001) models which are of the form

inf
f∈Hk,b∈R

1
n

n∑

i=1

maxL(yi , f (~xi) + b) + λ|| f ||2
Hk
. (2)

For SVR, the loss function is given byL(y, t) = max(0, |y − t| − ε) with ε ∈ Rpos
(the so-calledε-insensitive loss). Plugging in other loss functions in the above task
leads to various other frameworks; using the square lossL(y, t) = (y− t)2, for instance,
leads to the concept ofridge regression. The spaceHk is ahypothesis spacecontaining
functions of the form

f (·) =
n∑

i=1

αik(·, ~xi) (3)

with coefficientsα1, . . . , αn ∈ R and (positive semidefinite)kernel function k: R
d ×

R
d → R. The first term of the above objective measures how well the functionf can
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Figure 1. Comparison of thek-nearest neighbor (left) and the support vector re-
gression (right) model. Both models are tested on all quasars given in the data set.
Due to computational reasons, the SVR model is only trained on a selected subset of
patterns.

predict the (real-valued) labels and the second term measures the complexity of the
model. The parameterλ determines the trade-off between both objectives. Common
choices for the kernel function are thelinear kernel k(~xi , ~x j) = 〈~xi , ~x j〉 or the RBF
kernel k(~xi , ~x j) = exp(−γ‖~xi − ~x j‖

2) with user-defined parameterγ > 0.

3. Experimental Evaluation

We will now analyze the performance of both regression models for the taskat hand.
The labels we use are based on theSDSS quasar catalogprovided by Schneider et al.
(2010). As features, we consider all colors from neighbored bands(u-g, g-r, r-i, i-z).
This results in a data set consisting of 104,440 patterns inR4.

3.1. Standard Redshift Estimation

First, we analysis the performance of both models on the complete data set. Here,
the kNN model is based on all patterns, whereas the SVR model (with RBF kernel)
is based on a selected subset of the data containing 2,536 patterns (due to the cubic
runtime needed to train a model). The involved parameters are tuned via 5-foldcross
validation. Both models are tested on the (remaining) patterns that have not been used
for training the models. The result is depicted in Figure 1. It can be seen that the simple
kNN model exhibits an excellent overall performance. In contrast, the out-of-the-box
application of the SVR model leads to slightly worse results.

3.2. Looking over the Tea Cup’s Rim

As shown above, the kNN model is well-suited for densely populated regions of the
feature space. However, it cannot predict anytrendsfor unseen data. In contrast, SVR
has the potential to provide trends. To investigate this issue, we consider only quasars
with z ∈ [3,4] for training the models (again, a selected subset is used for SVR). The
remaining patterns are used for testing. For the SVR mode, we consider a linear kernel.
The results are shown in Figure 2. Naturally, the kNN model cannot predict any trends.
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Figure 2. The figures show the performances of the kNN (left) and the SVR (right)
models for the extrapolation scenario. Here, the models areonly trained on quasars
with redshiftsz ∈ [3,4]; the final models are then tested on all quasars. It can be
clearly seen that the SVR model is capable of predicting a trend, i.e., it can predict
the redshifts of quasars forz ∈ [4,5] even though none of these objects is given in
the training set.

However, the SVR model seems to provide reasonable guesses for the patterns not
covered by the training set.

4. Conclusions and Outlook

The experimental analysis indicates that thek-nearest neighbor regression model work
well for quasars exhibiting a relatively small redshift. Further, due to computational re-
strictions, other sophisticated regression schemes like support vector regression cannot
be trained on all data patterns, which leads to a worse performance in the context of the
overall regression task. However, the latter type of models can successfully be used to
detect linear structures in the data what paves the way for detecting new quasars. An
interesting future research direction is the question which (combinations of)features
lead to the best prediction performance for such settings. We plan to investigate this
question in near future.

Acknowledgments. This work is based on data of the Sloan Digital Sky Survey.
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