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Abstract

We consider the task of detecting quasars in the Sloan Digi-

tal Sky Survey based on both spectroscopic and photometric

data. The performances of our spectroscopic classification ap-

proaches are evaluated on a manually labeled training set. The

experiments indicate that the photometric features are sufficient

in order to obtain a reasonable classification performance for

this particular data set and that the performance can further

be improved by incorporating meaningful features obtained from

the spectroscopic data.

Motivation

Classification Task: Identifying Quasars

The (semi-)automatic analysis of data sets has become an in-

creasingly important issue for researchers in astronomy [1, 2].

This is especially true for massive data sets obtained from, e.g.,

the Sloan Digital Sky Survey [3] which is based on raw data of

about 60 TB. From a machine learning perspective, a variety of

problems in astronomy can be formulated as supervised (e.g.

classification, regression) or unsupervised tasks (e.g. cluster-

ing, dimensionality reduction). We describe the use of super-

vised learning techniques to identify quasi-stellar radio sources

(quasars) based on both spectroscopic and photometric data.

Data

Our data set is obtained from the spectroscopic data available

in the Sloan Digital Sky Survey (DR6) which is said to be “one

of the most ambitious and influential surveys in the history of

astronomy” [3]. The data for this survey has been obtained

via a 2.5-meter telescope at the Apache Point Observatory

which is equipped with two special-purpose instruments: a 120-

megapixel camera and a pair of spectrographs.

Apache Point Observatory (New Mexico)

Source: http://www.sdss.org

Classification Approach

The k-Nearest Neighbor classifier uses the k “closest” objects

from the given set of classified objects to assign a class to an

unclassified object [4]. More precisely, the (binary) classification

Ŷ (x) for an object x is

Ŷ (x) =

{

1 if f (x) > 0

−1 if f (x) ≤ 0,
(1)

where

f (x) =
1

k

∑

xi∈Nk(x)

yi (2)

and where Nk(x) denotes the k-nearest neighbors in the train-

ing set with respect to x. To define “closeness”, arbitrary metrics

can be used; a popular choice is the Euclidean metric.
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Spectroscopic Classification

Data: Given the photometric and spectroscopic data we gen-

erate a variety of data sets, see Table 2. Each data set contains

all N = 5, 261 objects (p = 510 objects of type “quasar” and

n = 4, 751 objects of type “other”). The labels have been ob-

tained manually by an expert based on the spectroscopic data

given for each object.

Quasars are distant galaxies with an active galactic nucleus and

thus their spectroscopic data exhibits broad emission lines. Be-

fore applying our classification approaches, we thus attempt to

first extract these meaningful features using the following pre-

processing step:

1. Merge consecutive flux values to obtain a “binned” version.

2. Apply a smoothing filter (e.g., the Savitzky-Golay-Filter).

3. Perform a spline interpolation to extract the continuum.

4. Extract peaks based on smoothed spectrum and spline

model.

Intermediate Results

The final features can then be created based on the continuum

and the extracted peaks:

Feature Description

F1 First value of the extracted

continuum

F2 Last value of the extracted continuum

F3 Integral of all positive peaks

F4 Integral of all negative peaks

F5 Width of the broadest positive peak

F6 Width of the broadest negative peak

F7 Major peak intensity

F8 Minor peak intensity

F9 Major face of positive peak

F10 Major face of negative peak

Experimental Setup: To train and evaluate the k-Nearest

Neighbor classification approach, half of each data set is used

as training and the other half as test set. The model parameter

k is determined via 10-fold cross-validation [4] on the training

set.

Extracted Features: We evaluate the k-Nearest Neighbor

classifier for the following features:

Data Set Features

D1 psfMag u - psfMag g, psfMag g - psfMag r,

psfMag r - psfMag i, psfMag i - psfMag z

D2 BinnedSpec500

D3 ExtractedFeatures

Results: Since our data sets are imbalanced, we resort to the

so-called Matthews Correlation Coefficient (MCC) [5] as quality

measure which takes into account the different types of errors

(true positives, false positives, true negatives, and false nega-

tives). We also provide the true positive rate (TP -rate) given by

TP/p as well as the false positive rate (FP -rate) given by FP/n
which can be seen as “hit rate” and “false alarm rate”, respec-

tively [6]. The classification performances of the kNN-classifier

on the various data sets are shown in the following table.

Data kNN

Set MCC Error TP FP

D1 0.881 2.17% 86.8% 0.9%

D2 0.810 3.38% 77.4% 1.2%

D3 0.969 0.57% 94.9% 0.0%

Classification Performances

To test the efficiency of our approach we resort to the recently

published DR7 quasar catalog [7] (considering all N = 81, 015
quasars also given in DR6 catalog). Here we obtain a hit rate of

91.9%.

Photometric Classification

Data: The data set used for the photometric classification ex-

periments is created by combining the photometric PSF- and

model-magnitudes with the spectroscopically obtained labels.

An analysis of the distribution of the r-band magnitudes indi-

cates that the sample selection criteria of the spectroscopic tar-

gets create two major populations. In contrast to the distribution

of all photometric data sets, objects with a low spatial extension

are not covered accordingly. Therefore we selected a subset

of the spectroscopic data that contains 82,344 objects and that

reproduces the distribution of all photometric objects.

magpsf −magmodel Histogram on Spectral/Photometric Sample

Experimental Setup: In our experiments we use k-Nearest

Neighbor classifiers that are trained with different features and

training sets with varying sizes. The parameter k was set to 5

for all experiments.

An 8-fold cross-validation [4] is used to analyze the performance

of the classifiers. On these partitions, a classifier is built with

the first n elements of the training set and the classification er-

ror statistics are collected on the corresponding test set. In all

experiments, false positive and false negative classifications are

comparable and therefore are omitted from the plots.

Experiment 1-3: The photometric pipeline of the Sloan Digital

Sky Survey classifies objects as “extended” if the difference be-

tween the PSF- and model-magnitude in two of the three bands

(g,r,i) exceeds 0.145. The SDSS classifier has an error of ≈ 16%
on the selected data set. Equivalent results are achieved by the

k-Nearest Neighbor classifier for a training set with ≈ 200 ele-

ments. Given more elements the classifier significantly outper-

forms the SDSS classifier.

In the first three experiments we evaluate the quality of the point-

extended-source separation with different sets of features.

• Features 1: magpsf (u,r,g,i,z), magmodel(u,g,r,i,z)

• Features 2: magpsf -magmodel(u,r,g,i,z)

• Features 3: magpsf (u-g), magpsf (g-r), magpsf (r-i), magpsf (i-z)

• Labels 1-3: A: stars and quasars, B: galaxies

Experiment 4: When trained with 10,000 data sets the k-

Nearest Neighbor classifier is able to predict quasars with an

error of ≈ 6%. A cross check with all spectroscopically classi-

fied quasars determines an error of 8.62% undetected quasars.

• Features 4: magpsf (u,r,g,i,z), magmodel(u,g,r,i,z)

• Labels 4: A: quasars, B: stars and galaxies
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