Processing Large Data Sets: The Hunt for High-z Quasars Kai Lars Polsterer, Peter-Christian Zinn and Fabian Gieseke

Processing Large Data Sets: The Hunt for High-z Quasars AG-Herbsttagung Heidelberg, 2011 Kai Lars Polsterer

RUHR UNIVERSITÄT BOCHUM

The Question

can we efficiently find high-z quasars (z>4.8) small computer / high prediction quality SDSS/DR6 catalogue was used 300*10⁶ objects observed in 5 filters (u,g,r,i,z) • 1*10⁶ objects have spectra 1*10⁵ of these objects are known quasars 150 of these quasars have z>4.8 covering 10,000 deg² (background image: 0.14 deg²)

> RUHR UNIVERSITÄ⁻

BOCHUM

Common Approaches

- define plain colour criteria
 - PROs:
 - physically motivated
 - easy to reproduce in 2d diagrams
 - high completeness
 - CONs:
 - global model
 - does not work for high dimensions
 - many false positive candidates

RUHR UNIVERSITÄ⁻

BOCHUM

Our Approach

- use k-Nearest Neighbours
 - local model
 - works fine in high dimensions
 - does not require physical assumptions
 - good reference samples available

$$\forall t_n \epsilon T, \hat{R}_{t(\overrightarrow{x})=t_n} = \frac{1}{k} \sum_{\overrightarrow{x}_i \epsilon N_k(\overrightarrow{x})} \begin{cases} 1, & t_i = t_n \\ 0, & \text{otherwise} \end{cases}$$

RUHR UNIVERSITÄ

BOCHUM

Finding the Nearest Neighbours

- neighbourhood search in Euclidean space
 - look-up implemented with kd-tree
- new distance to deal with measurement errors

$$d(\overrightarrow{u}, \overrightarrow{\Delta u}, \overrightarrow{v}, \overrightarrow{\Delta v}) = \sum_{i=1}^{N} \frac{(u_i - v_i)^2}{\Delta u_i^2 + \Delta v_i^2} + (|\Delta u_i| - |\Delta v_i|)^2$$

Classification

- 2 reference sets have been created
 - first reference set
 - all 1,258 z>4 + 1,000 medium redshift quasars
 - 1,000 galaxies + 1,000 stars + 1,500 cool stars

RUHR

BOCHUM

- second reference set
 - all 1,258 z>4 quasars
 - 10,900 cool stars
- neighbours are stored
 - ratios can be calculated later

Redshift Estimation

kNN regression model + selected reference set
77,000 references reduced to 1,100 objects
optimised for z > 4.8
4 colours used

$$\hat{Y}(\overrightarrow{x}) = \frac{1}{k} \sum_{\overrightarrow{x}_i \in N_k(\overrightarrow{x})} y_i$$

RUHR UNIVERSITÄT

BOCHUM

Candidate Selection

- 4 rejection filters combined
 - coarse / redshift / cool stars / new distance
- optimised for speed
 - 1 hour / 1000 objects with first implementation
 - 37.7 years on one core
 - 2-8 seconds / 1000 objects with optimisation
 - efficient data structures
 - optimised reference sets
 - parallel execution
 - 14 hours on 8 cores
- 8 Processing Large Data Sets: The Hunt for High-z Quasars
- 10 AG-Herbsttagung Heidelberg, 2011

Kai Lars Polsterer

RUHR UNIVERSITÄ⁻

BOCHUM

Results

- ratios optimised with all SDSS objects with spectra
 - 50% of all known high-z quasars are recovered
 - 40% are false positives
 - only 0.1% of the cool stars pass the rejection stage

RUHR UNIVERSITÄ

BOCHUM

122,000 candidates are returned

The Answer

3 candidates observed• with SCORPIO @ 6m BTA

