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Abstract

We present automated classification approaches to discriminate
quasars from other objects based on spectroscopic data. The perfor-
mance of our approaches is evaluated on a manually labeled training
set obtained from the spectroscopic information available in the Sloan
Digital Sky Survey. Our experiments indicate that feature extraction
and meaningful peak detection approaches significantly improve the
classification performance.

Motivation

Classification Task: Identifying Quasars

The (semi-)automatic analysis of data sets has become an increas-
ingly important issue for researchers in Astronomy [1, 2]. This is espe-
cially true for massive data sets obtained from, e.g., the Sloan Digital
Sky Survey [3] which is based on raw data of about 60 TB. From a
Machine Learning perspective, a variety of problems in Astronomy
can be formulated as supervised (e.g. classification, regression) or
unsupervised tasks (e.g. clustering, dimensionality reduction). We
describe the use of supervised learning techniques to identify quasi-
stellar radio sources (quasars) based on spectroscopic data.

Source: http://www.sdss.org

Quasars

Data

Our data set is obtained from spectroscopic data available in the
Sloan Digital Sky Survey (DR6) which is said to be “one of the most
ambitious and influential surveys in the history of astronomy” [3]. The
data for this survey has been obtained via a 2.5-meter telescope at
the Apache Point Observatory which is equipped with two special-
purpose instruments: a 120-megapixel camera and a pair of spectro-
graphs.

Apache Point Observatory (New Mexico)

Source: http://www.sdss.org

We use a manually labeled data set consisting of n = 3, 351 raw
spectra (319 “quasars“ and 3, 032 “other objects”). Each spectrum is
represented by a flux value (intensity) for each of the d = 3, 854 wave-
lengths.

Quasars vs. Other Objects (Raw Spectra)

Classification Task

The result of our manual labeling step is a (training) set T that consists
of spectra labeled with “quasar” (+1) or “other object” (−1), i.e., we
have T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1,+1}. The main objective
then is to determine a classifier with good classification performance
for “unseen” spectra.
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Classification Approaches

k-Nearest Neighbors: The k-Nearest Neighbor classifier uses the
k “closest” objects from the given set of classified objects to assign a
class to an unclassified object [4]. More precisely, the (binary) classi-
fication Ŷ (x) for an object x is

Ŷ (x) =

{
1 if f (x) > 0

−1 if f (x) ≤ 0,
(1)

where
f (x) =

1

k

∑
xi∈Nk(x)

yi (2)

and where Nk(x) denotes the k-nearest neighbors in the training set
with respect to x. To define “closeness”, arbitrary metrics can be
used; a popular choice is the Euclidean metric.

k-Nearest Neighbors

Support Vector Machines: Roughly speaking, the aim of a Sup-
port Vector Machine (SVM) is to find a hyperplane in a feature space
which maximizes the “margin” between both classes such that only
few training patterns lie within the margin. The latter task can be for-
mulated as an quadratic optimization problem, where the first term
corresponds to maximizing the margin and the second term to the
loss caused by patterns lying within the margin:

minimize
w∈H0, ξ∈Rn, b∈R

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(〈w,Φ(xi)〉 + b) ≥ 1− ξi, (3)
and ξi ≥ 0,

where C > 0 is a user-defined parameter. The function Φ : Rd → H0
is induced by a kernel function k : Rd × Rd → R with k(xi,xj) =
〈Φ(xi),Φ(xj)〉. A kernel function can be seen as a ”similarity mea-
sure” for input patterns. The goal of the learning process is to find the
optimal hyperplane f (x) = 〈w,Φ(x)〉 + b. Unseen objects can sub-
sequently be classified via Equation (1). A common choice for the
kernel function is the linear kernel

k(xi,xj) = 〈xi,xj〉 (4)

or the RBF kernel

k(xi,xj) = exp

(
−
‖xi − xj‖2

2σ2

)
(5)

with σ as additional parameter.

Support Vector Machines (Linear and RBF Kernel)
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Quasars are distant galaxies with an active galactic nucleus and thus
their spectroscopic data exhibits broad emission lines. Before ap-
plying our classification approaches, we thus attempt to first extract
these meaningful features using the following preprocessing step:
1. Merge consecutive flux values to obtain a “binned” version.
2. Apply a smoothing filter (e.g., the Savitzky-Golay-Filter).
3. Perform a spline interpolation to extract the continuum.
4. Extract peaks based on smoothed spectrum and spline model.

Intermediate Results

The final features can then be created based on the continuum and
the extracted peaks (see below).

Experiments

Experimental Setup: To train and evaluate the classification ap-
proaches, we use 1, 675 elements of the data as training and the
remaining 1, 676 elements as test set. For both approaches, model
parameters (k, C, and σ) are determined via a 10-fold cross-
validation [4] on the training set. The performances of the resulting
models are then evaluated on the test set, where the classification er-
ror (i.e., the percentage of misclassified elements) is used as quality
measure.

Extracted Features: We evaluate both classification approaches
for the following spectrum-to-features reductions:
• 963 Features: A binned version (factor 4) of the raw spectrum
• 2 Features: “Integrals” over all positive and over all negative values

in final peak curve (Step 4; green curve)
• 6 Features: “Integrals” over all positive and over all negative val-

ues in final peak curve (Step 4; green curve); the difference of these
values; shape of the peaks; the first and the last flux value.

Results: The following table shows the classification errors ob-
tained for both the k-Nearest Neighbor and the Support Vector Ma-
chine classifier (linear and RBF kernel). In addition to the classi-
fication errors, we provide the true positive rate (“quasar hit rate“)
as well as the false positive rate (“false alarm rate“) in brackets
(i.e., (tp/pos, fp/neg) where the test set contains pos = 154 “quasars”
and neg = 1, 522 “other objects”).

k-Nearest Neighbors SVM (Linear) SVM (RBF)
963 Features 4.5% (71%, 2%) 7.6% (68%, 5%) 5.0% (55%, 1%)

2 Features 3.0% (77%, 1%) 3.3% (74%, 1%) 2.5% (81%, 1%)
6 Features 1.5% (90%, 1%) 1.8% (90%, 1%) 1.5% (90%, 1%)

Classification Performances
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