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Preface

In the early 20th century science was revolutionised by new scientific approaches. For
example, Albert Einstein presented his theories on special and general relativity and
Max Planck introduced the quantum theory. In the 1920’s Julius Lilienfeld and
later Oskar Heil independently developed a first idea of field-effect transistors, a device
to electrically control current flow that can be used to digitally represent information.
In 1947 at the Bell Laboratories John Bardeen, Walter Brattain and William
Shockley built the first transistor of a germanium crystal. This was the dawn of the age
of semiconductors. By packing transistors together in integrated circuits and increasing
their packing density current microprocessors can easily be composed of several billion
MOSFETs.

With the new abilities of semiconductors a new kind of sensors and measuring devices
could be built. In astronomy objects in new wavelength windows could be observed. E.g.,
Arno Penzias and Robert Wilson unintentionally discovered 1964 the Cosmic Mi-
crowave Background (CMB) while working on a cryogenic and ultra sensitive microwave
receiver at the Bell Laboratories. Again at the Bell Laboratories Willard Boyle and
George Smith invented the first CCD detectors in 1969. These detectors offer a much
higher quantum efficiency with quasi linear photon response characteristics than pho-
tographic plates. Today a 30-cm telescope equipped with an off-the-shelf CCD-camera
generates images that are comparable with photographic exposures taken at the 5-m Hale
telescope on Mount Palomar in the 1950’s.

In 1941 Konrad Zuse already built the first fully functional and programmable com-
puter called Z3 out of telephone relays. This masterpiece of engineering combined with the
technique of transistors led to our computerised everyday life. Today almost all electrical
devices contain semiconductor based microprocessors. Modern cars have more computing
power than mainframe systems of the 1970’s and even simple energy saving bulbs use
integrated circuits.

As computer power increases a new field of scientific research was born: simulations.
Besides theoretical and experimental approaches scientific problems can be analysed by
using computer simulations. Based on preliminary theoretical considerations a system is
modelled with regards to some assumptions. After this system is simulated the results are
compared with the data of other experiments. This allows to analyse the relation between
a theoretical model and experimentally found results by confining the free parameters of
the model.

Besides the new kind of detectors in astronomy the available computer power led to
many technical improvements. Today azimuthal mountings are the most common design
used for large telescopes. These kind of mountings permit much stiffer and low weight
construction designs with the disadvantage of real time requirements to continuously con-
trol the individual axes. With the availability of fast control electronics this disadvantage
has vanished. Early approaches to build large optical reflective telescopes failed to pro-

vii
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duce large, stiff and thermally invariant mirrors. The active compensation of gravitational
distortion of the optics by control electronics allows to reduce the thickness and conse-
quentially the mass of the mirrors. This simplifies the thermal stabilisation of the mirror
with an optical quality undistorted by gravity. The next big improvement in computer con-
trolled optics was the invention of adaptively compensating mirrors. These AO systems
are able to minimise the negative effect of the Earth’s atmosphere on spatial resolution
and to reach the theoretical resolution of an optical system.

The newest evolution on telescope techniques is to synthesise a virtual radio telescope
in a supercomputer by interfering the data of single, wide spread radio antennas. With the
constantly increasing computing power more and more scientific experiments will migrate
from fixed to software based setups. These flexible setups allow faster and easier changes
of the configuration or even of the whole experiment. Because it is faster, easier and more
cost efficient to change software in comparison to hardware these multipurpose research
structures will become a typical approach.

By using microprocessors the number of possibilities to carry out an experiment in-
creases together with its complexity. With further advances in science new scientific ques-
tions can only be solved in co-operations that combine the knowledge of individual experts.
E.g., the world’s largest and complex machine the Large Hadron Collider (LHC) is built
by over 10,000 scientists and engineers. To manage and organise this huge workforce is
another major task. Even though a person builds and understands only a part of the whole
machinery each contribution is important for the project to be successful in the end. Thus
every scientist and engineer is participating accordingly in the scientific outcome.

The Large Binocular Telescope (LBT) is another example of a large cooperation to
build a unique research facility. Scientists from USA, Italy and Germany are working
together to realise one of the biggest optical telescopes in the world. As part of the German
collaboration the LUCIFER instrument is built by five institutes. This thesis describes
the control software of the LUCIFER instrument as a key contribution to a successful
realisation of a reliably and efficiently working near-infrared instrument. Without computer
science to handle the complexity of the instrument the astronomer would not be able to
carry out his observations.

Outline

This thesis is divided into 10 chapters. The first two chapters are designed to give an
introduction. In Chapter 1 the LBT and its instrumentation are described. Especially the
hardware, optics and electronics of both LUCIFER imagers and spectrographs are cov-
ered here. Additionally a short introduction to infrared (IR) astronomy is given. Chapter 2
is specialised on software development basics. The development environment of the LU-
CIFER project as well as the chosen development approach are presented. Chapter 3
contains the overall design of the LUCIFER Control Software Package (LCSP). The ser-
vice deployment and start strategies as well as the used external packages are covered.
The next four chapters give a more detailed description on the individual tiers of the con-
trol software. Chapter 4 contains all frameworks and services needed to run the control
software system. The remote service framework as a fundamental part of all services of
the control software is presented. The service description includes time synchronisation
and message generation as well as persistent storage of data. To implement this storage
an XML file access package and a special database interaction framework with its own
database client had to be developed. Chapter 5 describes the hardware-software interac-
tion tier. The communication framework that enables serial access to the electronics is



ix CONTENTS

presented. As the representative services of this tier the services of the motion control
electronics and of the switch box electronics are presented. In addition other environment
controlling services and their electronics are discussed as well as the central service re-
sponsible for tracking the state of the instrument. In Chapter 6 the tier that contains the
instrument motion control logics is presented. The complete sequencing framework and its
error analysing capabilities are shown. The Multi-Object Spectroscopy (MOS) Unit Service
as the most complex part of this tier and the specially developed sequencing framework
are depicted. Chapter 7 contains a short description of the instrument operation software,
the interaction of the embedded services with the other tiers and the GUIs which provide
access to the observers and engineers. In Chapter 8 the virtual instrument that is used
to simulate hardware access and its visualisation interface are presented. First results of
LUCIFER observations are presented in Chapter 9. Finally in Chapter 10 a new approach
in selecting high redshift QSOs candidates is presented.

Explanation of Typographic Conventions

This thesis uses a couple of typographic conventions to emphasise special textual content.
The following example demonstrate the character formats used and their purpose.

B Donald E. Knuth C
Persons are shown in small capitals.

B Mount Graham C
Italic font is used for names of places, objects and institutions.

B Gregorian C
Special terms are written in slanted characters.

B Large Binocular Telescope (LBT) C
Abbreviations and acronyms are presented in italic characters.

B de.rub.astro.util.time C
Names of software packages are written in bold typewriter font and use the source
code colour.

B TimeClient C
Classes are written in a smaller version of the font used to symbolise packages.

B RMITimeService C
Interfaces are written as classes.

B .getTime() C
A method name is written in italic characters and may be appended to the fully
specified class name.

B isSynchronized C
Attributes are presented in small typewriter characters.

B @author C
JavaDoc tags are written in bold face typewriter font in dark green.
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B -name C
Program arguments use the same font as JavaDoc tags in dark red colour.

B <abcd12345> C
Character strings that are used in the context of software use typewriter font and
are framed in “<>”. This may be file path strings, name strings, parameter strings
and so on.

B ISO 9000 C
Any kind of standardisation e.g., ISO standards or DIN norms are printed as sans
serif font.
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The LUCIFER Instrument

A
s an introduction to the embedding
project, the Large Binocular Telescope
(LBT) and its instrumentation are

briefly described. In order to understand the re-
quirements for the control software particularly
the mechanics, the optics, the electronics and the
detectors of the LUCIFER instrument are pre-

sented in detail. Further information on the con-
trol computer hardware is given. Finally a short
overview of infrared (IR) astronomy provides the
scientific background to understand the complex-
ities of operating a near-infrared (NIR) instru-
ment and the consequences for the LUCIFER
Control Software Package (LCSP).

Based on the technological progress, new designs of telescopes and instruments become
possible. Lighter mirror designs that rely on actively controlled support structures can be
used to build larger telescopes. This growth in light collecting area increases the sensitivity
of the telescopes and therefore allows to observe fainter objects. Combined with new
techniques to cancel the atmospheric distortion, larger telescopes provide higher spatial
resolution than classical ground based telescopes. The Large Binocular Telescope (LBT)
is representative for this new class of technology based telescopes.

1.1 The Large Binocular Telescope

The LBT is built by a cooperation of different countries, funded by half by European
partners from Italy and Germany. On the Italian side there are the Osservatorio As-
trofisico di Arcetri (Florence), the Osservatorio Astronomico di Bologna, the Osservatorio
Astronomico di Roma, the Osservatorio Astronomico di Padova and the Osservatorio
Astronomico di Brera (Milan) managed by the Istituto Nazionale di Astrofisica (INAF).
The German LBT Beteiligungsgesellschaft (LBTB) consists of the Max-Planck-Institut für
Astronomie (MPIA) in Heidelberg, the Landessternwarte (LSW) in Heidelberg, the As-
trophysikalisches Institut Potsdam (AIP), the Max-Planck-Institut für Extraterrestrische
Physik (MPE) in Munich and Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn.
Both European partners contribute 25 % each to the LBT project. The other half is funded
by partners in the USA. The state of Arizona, paying 25 % of the costs, is represented by
the University of Arizona (Tucson), the Arizona State University (Tempe) and the North-
ern Arizona University (Flagstaff). The remaining 25 % are distributed between the Ohio
State University, the University of Notre Dame, the University of Minnesota and the Uni-
versity of Virginia. This international cooperation is necessary to build one of the largest
optical telescopes on earth. To make such a project affordable for the contributing uni-
versities, the telescope has been designed, built and is maintained as a very cost effective
project. The overall expenses for building the telescope was estimated in 1989 at approxi-
mately 800,000 US$ per square metre of light collecting area. With 110 m2 this sums up to
a total of approximately 88 million US$ of 1989. This figure is two to four times lower than
for other ground based telescopes in this class. On the basis of a 10-year telescope life time

3



CHAPTER 1. LUCIFER INSTRUMENT 4

Figure 1.1: Enclosure image by David Harvey from rooftop of the VATT (Aug. 2007). The
dead trees in the background resulted from forest fires, that almost destroyed the
telescope building. (Image taken from http://medusa.as.arizona.edu/lbto/,
2009)

and a construction cost amortisation within that period and including the maintenance
and personnel expenses a one-night observation will cost approximately 80,000 US$.

At an elevation of 3,192 m the LBT is located on Mount Graham1 in the Pinaleño
Mountains in south east Arizona. It is part of the Mount Graham International Obser-
vatory (MGIO) together with the 1.8-m Vatican Advanced Technology Telescope (VATT)
and the 12-m Heinrich Hertz Submillimeter Telescope (SMT). Mount Graham was cho-
sen in the 1980s to host an observatory due to the low ambient light pollution, the small
amount of atmospheric water vapour and finally the clear skies throughout the year. The
excellent infrastructure in that area with a paved road nearly to the top, local technical
support and enough space to build telescopes have been other arguments to choose this
site. Cromwell et al. (1990) carried out an extensive site testing over years. They de-
termined a median seeing between 0.′′55 (7,165 Å) and 0.′′59 (5,000 Å) compared to 0.′′43 at
the Mauna Kea Observatory on the island of Hawaii. Although showing a better result, the
latter site has the disadvantage of being outside the continental USA and of very limited
space for new telescopes.

In 1996 the construction of the foundation of the LBT was started. Almost 10 years
later, in October 2005 the ”First Light” image of NGC 891 was taken with one of the prime
focus cameras. In the near future more and more instruments will be attached to the tele-
scope until the full planned performance is reached. This first-generation instrumentation
of the LBT is described later.

The enclosure of the LBT was designed for temperature stability, compact size and
uninterrupted airflow between the outside and the telescope chamber. The costs and the
influences on the environment have been taken into account, too. Often the drawbacks
of older observatories designs were seeing effects caused by thermal turbulences around
the optics, heat generating equipment and uncontrolled airflow around the observation
slit. Therefore the enclosure of the LBT opens to all sides to allow preferably laminar

1Dzi l Nchaa Si An (in the Western Apache language) is a holy place of the Apaches and was one of the
refuges of Geronimo.
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Figure 1.2: Fisheye image of the telescope by Marc-Andre Besel and Wiphu Rujopakarn
(Feb. 2008). Above both main mirrors the prime focus cameras are mounted. The
bent Gregorian focal stations between the main mirrors are still empty. Each of the
open shutters in the background have a slit of 10.4 m. Additional lateral slits can
be opened. (Image taken from http://medusa.as.arizona.edu/lbto/, 2009)

airflow around the telescope. To control the inside temperature and keep it stable during
daytime, the LBT dome is equipped with 4 ventilation pipes that are as high as a man
(see Figure 1.1). All temperature generating equipment is placed beneath the telescope
chamber or resides in special air-conditioned and temperature controlled areas. This new
kind of dome design was first developed and used for the New Technology Telescope (NTT)
(see Wilson, 1983). The whole telescope building consists of an approximately 25 m high
structure that contains all technical equipment, the control room, several workshops, of-
fices, clean rooms, a high bay area and the dormitories, kitchen and living room of the
staff and astronomers. On top of this structure the telescope enclosure is mounted. This
rotatable telescope chamber is a 25 m×28 m×29 m wide cuboid with a total moving mass
of about 1,600 tons. Hill and Salinari (2004), Hill et al. (2006) and Hill et al.
(2008) give a comprehensive description of the LBT project.

The telescope structure and mounting was designed and built in Italy. In 2002 the com-
pleted structure was disassembled and shipped to Arizona. To allow an accurate smooth
motion of the telescope the whole structure floats on hydrostatic oil bearings operating at
120 bars and is moved by geared electric motors. By using high resolution band encoders
and dynamic balancing systems that pump fluids to special ballast tanks, the accurate
motion of an estimated total weight of 580 tons is reached. The telescope structure and
co-rotating enclosure is able to turn with 1.3◦per second. According to Watson (1978)
this leads to a zenithal blind spot of <0.5◦ size.

Two mirrors are mounted side by side onto the telescope structure. Each of these pri-
mary mirrors has a diameter of 8.4 m and a focal ratio of F/1.142. They have been designed,
spin-casted, ground and polished with an accuracy of 20 nm by the Steward Observatory
Mirror Lab2 in Tucson. The finished mirrors are aluminised at the telescope without the

2The Mirror Lab, founded in 1980 by Roger Angel, is placed beneath the American Football stadium
that hosts the local university team, the Arizona Wildcats. This laboratory is one of the world leading
facilities for lightweight, huge and powerful mirrors.
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primaries figure: parabolic concave
size: 8.4 m ∅, 894 mm edge thickness

central hole: 889 mm ∅
focal ratio: F/1.142

material: E6∗ borosilicate glass in honeycomb layout
weight: 16 tons

mounting: 160 actively compensating pneumatic actuators
cooling: by air flow

secondaries figure: parabolic concave
size: 911 mm ∅, 1.6 mm thick

focal ratio: F/15
weight: ≈10kg (shell), 0.6 tons (total adaptive secondary)

mounting: adaptively on 672 electromagnetic actuators
attachment: with hexapod on movable swingarm

tertiaries figure: flat
size: 500 mm×640 mm

attachment: on movable swingarm 2.25 m above primary vertex

Table 1.1: Parameters of the LBT optics.
∗The E6 glass of the Ohara Corporation in Japan is used. This material has good pro-
cessing characteristics and a thermal expansion coefficient of 2.9 ppm/K. For comparison
ZERODUR R©produced by SCHOTT Germany has a near-zero expansion coefficient with
a homogeneity between 0.1 to 0.01 ppm/K.

necessity to remove them. A honeycomb layout is used, that provides structural stiffness
while significantly reducing the weight of each mirror from 100 tons of a solid one to merely
16 tons. Due to the relatively high thermal expansion coefficient of the used borosilicate
glass and the deformation caused by the Earth’s gravitational field, active regulation of the
mirror within its cell is needed. Because of the low mirror mass the thermal expansion is
compensated quite easily with air cooling. Additionally, the diurnal temperature variation
is reduced by keeping the mirror at night temperature. To compensate for the gravita-
tional field, active optics is needed. Therefore the primary mirrors are mounted each on
160 actively regulated pneumatic actuators. The active optics system and its optimisation
is described in Martin et al. (2004).

Both mirrors combined provide a light collecting area that is equivalent to a single
11.8 m mirror. Mounted at a 14.4 m distance (centre to centre), interferometricly com-
bined the mirrors have an effective resolution of a 22.6 m mirror. This baseline fills the
gap between current 10 -m class telescopes and long baseline interferometers like VLTI3

(46 m – 200 m baseline) or Keck4(85 m baseline). Herbst and Hinz (2004) and Wagner
(2007) give an overview on the interferometric instruments and the planned experiments
with the LBT.

To achieve full optical performance with an interferometric resolution of 5 mas in vis-
ible light and 20 mas in the near-infrared, the distortion of the wavefront generated by
atmospheric turbulences needs to be compensated. Therefore Adaptive Optics is required.
Until the first adaptive secondary is attached and fully functional 5 a rigid secondary is

3Very Large Telescope Interferometer (VLTI) is part of the Very Large Telescope (VLT), four 8.2 m tele-
scopes placed on Cerro Paranal (2,635 m) in Chile. The VLT is maintained by the European Southern
Observatory (ESO). VLTI combines the light of the four main and several auxiliary telescopes to obtain
the different baselines.

4The Keck Observatory consists of two segmented 10 m mirrors, located on Mauna Kea (4,145 m).
5The adaptive secondary is expected to be operational by the end of 2011.
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Figure 1.3: Instruments of the LBT at the different focal stations. (image adapted from
http://www.aip.de/groups/pepsi/, 2009)

used. The concave secondaries with a focal ratio of F/15 are mounted on 672 electronical
actuators. In order to cancel the atmospheric effects, these actuators can transform the
911 mm wide and 1.6 mm thick secondary at kilo Hertz rates. A real time computer and
control electronics system, with a parallel computational power of 163 Gflop/s6, analyses
the distorted wavefront and calculates the correction at each individual actuator. The thin
mirror shell was built by the Mirror Lab and shipped to Arcetri (Italy) where the Adap-
tive Optics system is manufactured. Riccardi et al. (2003) describe the design of the
adaptive secondaries of the LBT. For the current status see Riccardi et al. (2008).

1.2 The Instruments of the LBT

Depending on the used optical setup, the entering light can be bypassed to one of the
instrument foci. To make use of the short focal length of the primary mirrors, cameras
have been built on each side. They are mounted on swingarms for a flexible use in the
optical beam. When the Gregorian setup is used the prime focus cameras are replaced
by rigid or adaptive concave secondaries. On each side a tertiary flat mirror reflects the
beam to one of the three focal stages between the primaries. Without this flat mirror
the beam is directly passed to the primary Gregorian focus. The LBT instruments and
their focal stations (see Figure 1.3) are described in the following subsections. In Table 1.2
fundamental instrument parameters are compared. The LUCIFER instrument is described
in detail in the Section 1.3.

6For comparison a PC processor (Intel Core i7 965XE, quad-core) performs with ≈ 70 Gflop/s while a
GPU (nVidia GeForce GTS 260M ) provides ≈ 400 Gflop/s in double precision.
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Focal Spectral Spectral
Instrument

Station
Modes

Coverage Resolution
FOV

LBC-Blue 0.32 – 0.5µm
LBC-Red

Prime CCD-Mosaicing
0.5 – 1.0µm

4 – 50 27′×27′

Imaging, MOS,
MODS-Blue

Direct F/15 Long-Slit-
0.32 – 0.55µm, 2k

6.′5×6.′5
MODS-Red

Spectroscopy
0.55 – 1.1µm opt.5k – 8k

Imaging, MOS,
LUCIFER1

Front-Bent AO, Long-Slit- 0.9 – 2.5µm
5k – 10k 4′×4′

LUCIFER2
Spectroscopy

AO≈40k 30′′×30′′

a)Fizeau-, a) 5 – 28µm
LBTI Centre-Bent b)Nulling- b) 3 – 5µm and 2 – 30 40′′×40′′

Interferometry 8 – 13µm
LINC- Fizeau- 10′′×10′′–

NIRVANA
Rear-Bent

Interferometry
0.6 – 2.4µm 5 – 20

20′′×20′′

Spectroscopy
PEPSI

Rear-Bent
Spectro- 0.39 – 1.1µm 40k – 300k 0.′′5 – 1.′′4

Direct F/15
polarimetry

Table 1.2: Comparison of the characteristics of the LBT instruments. (Table adapted from
Wagner, 2008)

1.2.1 The Large Binocular Camera (LBC)

The Large Binocular Cameras (LBCs) are built in a joint project of different Italian
INAF observatories, the Osservatorio Astronomico di Roma, the Osservatorio Astrofisico
di Arcetri (Florence), the Osservatorio Astronomico di Padova and the Osservatorio As-
tronomico di Trieste. Both instruments have been the first scientific instruments attached
to the telescope. Mounted on moveable swingarms they can be brought into the prime
foci of the F/1.142 main mirrors to cover a wide field of 23′×23′ in the sky. A group of 6
lenses corrects the optical beam and produces a flat image on the detectors. The biggest
lens has a diameter of approximately 0,8 m. Each camera uses an array of four CCD chips
with 2,048×4,608 pixels each. The positions of the CCDs are optimised to cover the cor-
rected scientific field of view leading to an effective detector size of 6,150×6,650 pixels.
Each camera hosts two filter wheels with a total of 8 usable filter positions. One of the
cameras is optimised for the wavelength range between 0.5µm and 1.0µm. This LBC-Red
uses IR coated detectors and lenses with good optical long wavelength characteristics. The
other camera, LBC-Blue, is optimised for the UBV bands (0.32µm – 0.5µm) and uses UV
coated detectors as well as lenses with good short wavelength characteristics. By observing
the same object with both instruments the efficiency of the LBT can be doubled. Speziali
et al. (2008) describe the instrument and evaluate the performance of the first binocular
observation runs.

1.2.2 The Multi-Object Double Spectrographs (MODS)

MODS is the optical counterpart of the LUCIFER instrument (see Section 1.3). Both
identical MODS instruments are being built by the Ohio State University. As described
in Pogge et al. (2006), these low- to medium- dispersion spectrographs are placed in
the direct F/15 focus behind the central hole of the primary mirrors. In each instrument
the optical beam passes a dichroic splitter and is guided to a separate wavelength opti-
mised red and blue channel. Each channel will have its own CCD detector with a size of
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4,096×4,096 pixels in the commissioning phase. For scientific use these detectors will be
replaced by 3,072×8,196-pixel detectors with the same pixel size of 15µm×15µm. By us-
ing a custom designed stabilisation system to compensate actively the image motion, long
time observations are not affected by gravitational deformation of the large instrument
structure. A moveable turret stores the gratings and a prism for different spectroscopic
resolutions as well as a plain mirror for imaging. The focal plane of the MODS instrument
can be equipped with a mask during observation. These masks are stored in a cabinet
with 24 positions and can either be used to for common long-slits or user-defined multiple
object masks for Multi-Object Spectroscopy (MOS).

1.2.3 The Large Binocular Telescope Interferometer (LBTI)

NASA7 and the University of Arizona are going to build the LBT Interferometer (LBTI),
that is located in the central bent Gregorian focus. LBTI is designed as a pathfinder project
for further space missions. By destructively interfering the signals from both mirrors, the
light of a central star can be reduced by factor 104. This allows imaging of young planets
and determination of dust properties in circumstellar disks. To reduce the instrument
related thermal noise, typical for the observed wavelengths, all optical components of LBTI
need to be cryogenically cooled down to 77 K with liquid nitrogen. In order to reach the
aimed spatial resolution of a 22.6 m wide telescope, both secondaries need to be working
adaptively. With a spatial resolution of 0.′′04 and a 40′′×40′′ field of view, the mid-infrared
Fizeau-mode camera provides unique scientific capabilities especially for extrasolar planet
research and analysis of highly complex sources (see Mainzer et al., 2006). There are
two other cameras for nulling and imaging. Their super high spacial resolution allows to
examine the zone of habitable planets, that corresponds to 0.3 AU - 15 AU at a distance
of 10 pc to 500 pc, respectively. Hinz et al. (2008) give more detailed information on the
nulling and imaging camera of the LBTI.

1.2.4 The LBT Interferometric Camera (LINC) - Near-Infrared/Visible
Adaptive Interferometer for Astronomy (NIRVANA)

LINC-NIRVANA is a Fizeau interferometric imager, built for the rear bent Gregorian fo-
cus by a consortium of the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg), the
Istituto Nazionale di Astrofisica (INAF) represented by Osservatorio Astrofisico di Arcetri
(Florence), the Erstes Physikalisches Institut der Universität zu Köln and the Max-Planck-
Institut für Radioastronomie (MPIfR) (Bonn). In Fizeau interferometers, the wavefronts
interfere in the focal plane instead of the pupil plane. Therefore LINC-NIRVANA will be
able to produce real images with a spatial resolution of e.g., 10 mas in the J band. The
field of view is theoretically limited by the ability of the adaptive secondaries to produce
a flat wavefront over the maximum possible scientific 2′×2′ field. In this project the field
of view is limited by the costs of the used 2,048×2,048-pixel HAWAII-2 detector arrays,
that cover merely a 10′′×10′′ field of view. For the full field of view 144 detectors of this
type would be required. It would be a technical challenge to arrange, control and read out
this multitude of detectors. The complexity of controlling a single detector array of this
type is described in Subsection 1.3.5. The main task of the LINC-NIRVANA instrument

7National Aeronautics and Space Administration (NASA) is the agency of the United States that is re-
sponsible for the US aerospace research and space program. NASA was founded in 1958 under president
Eisenhower as a response to the Soviet Union’s Sputnik project, sending the first artificial satellites into
Earth orbit.
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is to control and stabilise the interfering focal planes. This is done by using complex opto-
mechanical devices, that compensate e.g., the field rotation and the optical path length.
Mounting two mirrors side by side reduces the problems of interfering the light of two
telescopes. Due to the anticipated spatial resolution of 10 mas any vibrations caused by
the own motors of the instrument, the telescope mounting or other instruments must be
eliminated or at least be significantly reduced. Astronomical observations are performed
under different rotation angles to compose a high resolution image. This observation tech-
nique is necessary because one axis of the optical setup synthesises a resolution of a 22.6 m
telescope while the resolution of the other axis is equal to the size of a single mirror.
LINC-NIRVANA is described in detail in Herbst et al. (2004) while the current status
is reflected by Herbst et al. (2008).

1.2.5 The Potsdam Echelle Polarimetric and Spectroscopic Instrument
(PEPSI)

PEPSI, as described in Strassmeier et al. (2003), is a PI instrument that uses the
special LBT design of two mirrors mounted side by side. This instrument will allow si-
multaneous observations of circularly and linearly polarised light. PEPSI will have a very
high spectral resolution between 40,000 and 300,000 for wavelengths of 0.45µm – 1.1µm,
respectively. Furthermore PEPSI will also be able to resolve short-time effects. The air-
conditioned Echelle spectrograph is located inside the telescope building and is attached
to the telescope via fibres mounted to the polarimetric units at the direct F/15 and rear
bent Gregorian foci. Both rear bent units are permanently mounted and can be used with-
out the exchangeable direct F/15 units for non-polarimetric spectroscopy. To reach full
resolution, both adaptive secondaries need to be working. Two Acquisition, Guiding and
Wavefront Sensing Units (AGWs) will be mounted to the direct F/15 foci. Their task is
to get the necessary data to control the active and adaptive optics of the telescope. Two
similar AGWs are also mounted to the front bent Gregorian foci in order to support the
LUCIFER instrument during observations.

1.3 LBT NIR Spectroscopic Utility with Camera and Inte-
gral Field Unit for Extragalactic Research (LUCIFER)

Both LUCIFER instruments are built by a collaboration of five German institutes. The
Landessternwarte (LSW) (Heidelberg) is the head institute of this consortium and respon-
sible for project management and coordination of the different partners. The mechanical
and optical instrument design as well as the system integration and testing was done by the
LSW. This design process of the LUCIFER hardware was supported by the Fachhochschule
für Technik und Gestaltung (FHTG) in Mannheim. The robot mechanism that exchanges
user-defined masks in the LUCIFER instrument was designed and built by the Max-Planck-
Institut für Extraterrestrische Physik (MPE) in Garching. This most critical part allows
Multi-Object Spectroscopy (MOS). Another partner in Heidelberg, the Max-Planck-Institut
für Astronomie (MPIA), contributed the instrument control electronics, the detector and
the cryo-design. The Astronomisches Institut der Ruhr-Universität Bochum (AIRUB) is
responsible for developing the LUCIFER instrument control software, that is part of this
thesis.

LUCIFER is a pair of near-infrared spectrographs and imagers with multiple observa-
tion modes. One of the first presentations of the LUCIFER project was given in Mandel
et al. (1999). In (2008/2009), 10 years later, it was installed at the telescope and ready
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Figure 1.4: LUCIFER attached to the LBT. Left: The control and readout electronics
mounted to the end of the dewar. Beneath LUCIFER the main electronics rack is
placed. Right: Cable wrap and instrument behind the auxiliary cryostat gangway.
(Images by Peter Buschkamp).

for scientific use. The progress of the LUCIFER project can be traced by looking at
the different status reports (Seifert et al., 2003; Mandel et al., 2004, 2006, 2007,
2008). Both instruments comprise the near-infrared equipment of the LBT, covering the
wavelengths between 0.85µm and 2.5µm. Depending on the instrument setup selected,
NIR imaging can be done by using the 2,048×2,048-pixel Rockwell HAWAII-2 detector
(see Subsection 1.3.5). The field of view of LUCIFER is 4′×4′ in seeing- and 30′′×30′′

in diffraction-limited observation mode. Combined with the three internal camera optics
LUCIFER offers a spatial resolutions of 0.′′25, 0.′′12, and 0.′′015 per detector element. Other
instrument setups allow long-slit and Multi-Object Spectroscopy with resolutions of 5,000
to 10,000 in seeing limited and 40,000 in diffraction limited mode, respectively. These mul-
tiple observation modes make LUCIFER the so called Swiss army knife of the LBT. In
order to reduce the thermal interference of the instrument, the LUCIFER mechanics and
optics are placed in a cryostat. As other infrared instruments this cryostat is evacuated
and cooled down to temperatures of ≈60-70 K. Because of this cooling in the majority of
cases NIR instruments are more costly and complicated than optical ones. The LUCIFER
cryostat is 1.6 m high and has a diameter of 1.6 m and is one of the largest cryostats used in
astronomical applications (see Image 1.4). In the following the different functional groups
of the LUCIFER instrument and their implied requirements are described more precisely.
These specified hardware requirements are significant for the control software.

1.3.1 The Optics

Even though LUCIFER has a comparably large cryostat, it requires a compact optical
design. Therefore the optical path is several times folded in order to fit into the cryostat.
This optical design is described in detail in Seifert and Xu (2002). The scientific NIR
beam, coming from the telescope, enters the instrument through the tilted dichroic en-
trance window. On the other hand the optical part of the scientific beam is reflected by
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Seeing Limited Diffraction Limited
N 1.8-Camera N 3.75-Camera N 30-Camera

Focal Ratio f/1.8 f/3.75 f/30Camera
Focal Length 180 mm 375 mm 3,000 mm
Focal Ratio f/15.0Telescope
Focal Length 123,769 mm

Collimator Focal Length 1,500 mm
Effective Focal Length 14,850 mm 30,940 mm 247,540 mm

Pixel Scale 0.′′25/pixel 0.′′12/pixel 0.′′015/pixel
Imaging 4′×4′FOV
Spectroscopy 4′×3′

30′′×30′′

Table 1.3: Basic optical data of the LUCIFER instrument. Compiled from Seifert and Xu
(2002)

the plan-parallel 160 mm×225 mm entrance window. The Acquisition, Guiding and Wave-
front Sensing Unit (AGW) gathers the necessary data out of this visible beam to analyse
the wavefront for the Adaptive Optics. In the cryostat the beam passes the Focal Plane
Unit (FPU) that is used to reproducibly position long-slit and MOS masks in the focal
plane. Immediately behind the focal plane the first lens of the collimator is mounted. Then
the beam passes 3 folding mirrors, before the last two collimator lenses are reached. The
whole folded refractive collimator has an effective focal length of 1,500 mm and produces
a collimated beam of 102 mm size. Two of the four folding mirrors can be moved during
observation in order to compensate the instrument flexure. Behind the folded collimator
optics the last folding mirror bends the beam towards the grating turret. The Grating Unit
is placed at the pupil of the instrument. It contains a flat mirror for imaging and a high
dispersion plus two low dispersion gratings for spectroscopy. Reflected by the Grating Unit
the beam enters the Camera Unit. To change the image sampling resolution during obser-
vation, three different cameras are mounted on a wheel. The N 3.75 camera has a spatial
resolution of 0.′′12 per pixel8 and can be used for seeing limited imaging and spectroscopy,
while the N 1.8 camera with 0.′′25 per pixel is optimised for spectroscopy. With 0.′′015 per
pixel the N 30 camera is used for diffraction limited observation modes. See Table 1.3 for
detailed information on the LUCIFER optics. Both N 1.8 and N 3.75 cameras have a space
between the main optics and the necessary field lenses where the Filter Wheel Unit in-
tersects the beam. One of the field lenses is shown in Figure 1.5, just right of the camera
body (in red). The Filter Wheel Unit consists of 2 rotating wheels with 27 scientific filter
positions. Behind the Filter Wheel Unit the detector is mounted on an adjustable stage
to correct the focal length depending on the camera and filters used.

In the first installed version of the LUCIFER instrument the intended Integral Field
Unit, the Slit Viewer, the Atmospheric Dispersion Corrector (ADC) and the NIR Tip-Tilt
(TT) system are missing. Although these parts are not installed the required space is
reserved and they can be installed during later instrument upgrades. The ADC is required
for AO observations and will be installed in the near future.

1.3.2 The Mechanics

Due to the requirement of reducing thermal interference, LUCIFER needs to be cryo-
genically cooled down to 60 K. Therefore the optical parts of the instrument have to be
placed in a dewar. All mechanical movable parts inside of LUCIFER are utilised to change
80.′′24 per pixel with Nyquist Sampling.
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Figure 1.5: LuciferVR image of the different mechanical LUCIFER instrument units. A: filter
wheel, B: camera wheel, C: grating selection, D: shield shutter, E: exchangeable
and fixed mask cabinet, F: MOS Unit structure and mask retainer, G: mask
handling robot, H: focal plane mask interface, I: inner structure.

the optical instrument setup. Building opto-mechanical parts that can be moved at liquid
nitrogen temperatures (77 K) and below is a challenging engineering task. Lubrication of
bearings or gears is very complex in a low pressure/temperature environment. Error diag-
nostics, in case of a stuck or not appropriately moving element, cannot be performed so
easily as under non-cryogenic conditions. The visual analysis of the problematic parts can
only be accomplished through small inspection windows inside the dewar vessel. Addition-
ally the different thermal expansion coefficients of the used materials have to be taken into
account. There is no guarantee that an assembled section that moves flawlessly at ambient
temperatures, will behave the same at cryogenic temperatures.

Table 1.4 gives an overview of the mechanical units and the assigned functions. By a
total of ≈150 switches and 30 stepper motors the motion of the opto-mechanical elements
of LUCIFER is realised. Additionally electromagnetic tilt units, cold-clamps, electromag-
netic locks, strain gauges, reed contact sensors and angular resolvers/incremental position
encoders are utilised for particular tasks. The implemented hybrid stepper motors combine
the advantages of reluctance and permanent-magnet stepper motors. This type of motor
minimises the magnetic holding torque and the amount of steps lost. LUCIFER is deliv-
ered in a stripped-down configuration with 3 of the anticipated units missing. This fact
leads to a reduced number of 22 motors. 12 of these motors are used by the MOS Unit,
that is responsible for reproducibly transporting a mask to the focal plane and back to
the storage again. The required positioning accuracy of a mask is 10µm. The MOS Unit
additionally has a cryogenic cabinet exchange mechanism to change masks without the
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Instrument Unit Subunit Task/Hardware/Comment

Grating Unit to exchange gratings/plain mirror
Grating Turret 1 motor, 3 switches, motor switches∗,
Grating Tilt 3 tilt selection units

Camera Unit to exchange camera optics
Camera Wheel 1 motor, 2 switches, motor switches∗

Filter Wheel Unit to exchange filters
Wheel One 2 motors, 8+2 switches, 2 cold-clamps
Wheel Two one position contains a pupil viewer lens

Pupil Viewer Unit to move lens for pupil image analysis
In-Out 1 motor, motor switches∗

Flexure to compensate for instrument flexure
Compensation Mirror One-1 4 motors, motor switches∗

Unit Mirror One-2
Mirror Four-1
Mirror Four-2

Detector Focus to bring the detector into focus
Focal Stage 1 motor, motor switches∗

ADC Unit to compensate for atmospheric disper-
sion

In-Out 3 motors, motor switches∗

Prism A
Prism B not constructed yet

Slit Viewer to put additional detector in front of
mask

In-Out 1 motor, motor switches∗

not constructed yet

NIR Tip-Tilt to move NIR TT sensor into beam
In-Out 4 motors, motor switches∗

X Position
Y Position
Focus not constructed yet

MOS Unit to bring mask into focal plane
FPU Clamp X 12 motors, 3 electromagnetic locks,
FPU Clamp Y 6 encoders, 114 switches, 2 strain-
MHU Translation gauges, 2 reed contact sensors
MHU Rotation 1 gravitational 3-axis accelerometer
Mask Grabber
Mask Selection
Mask Locking
Cabinet Locking
Cabinet Translation
Shield Shutter
AC Translation
AC Thermal Bridge

Table 1.4: Overview of the units of the LUCIFER hardware.
∗Limit switches and an optional reference switch
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need of warming up LUCIFER. For that a pre-cooled Auxiliary Cryostat (AC) is attached
vacuum-tightly to the instrument dewar and the rearmost cabinet part that contains 23
masks is exchanged. See Figure 1.5 for the exchangeable cabinet part. In Figure 1.4 the
rails of the AC are visible and the vacuum lock is covered with a black protective cap.
Compared to the other instrument units which can simply and independently translate or
rotate without the risk of collision, the motors of the MOS Unit have to interact complexly
to perform a mask exchange. This complex motion is made possible by the application of
angular resolvers and encoders. Due to this complexity the control software of the MOS
Unit is described separately in Chapter 6.2.

1.3.3 The Electronics

The main tasks of the LUCIFER electronics are to drive the instrument mechanics, monitor
the instrument parameters and control the detector. The electronics responsible for the
opto-mechanics and the detector control electronics are placed in two boxes at the end
of the instrument dewar. The remaining main electronics is mounted in a separate rack
beneath the dewar. This rack is divided in instrumentation and auxiliary electronics (see
Figure 1.4). All connections between the electronics rack and the instrument have to pass
the cable wrap at the de-rotator.

Several electronic systems work together to control the motion of the independent
instrument units. There is the motion control electronics developed by the MPIA which is
used to drive the stepper motors and to control the encoders and electromagnetic motion
lock systems. Another MPIA development by Michael Lehmitz is the High Resolution
Analog Measurement and Output Board (HIRAMO). It is used to check the instrument
cabling, to control the cold clamps, to provide 16 additional position switch connectors
and to adjust the tilt of the gratings. The MPE developed the Switch Box electronics,
which is used to access all switches of the MOS Unit9, to evaluate the strain gauges and
to measure the orientation.

Other electronic systems are responsible for monitoring and controlling important in-
strument parameters. The temperature controller and the temperature monitor are re-
sponsible for regulating the detector and fanout board temperature and monitoring the
temperatures inside of LUCIFER, respectively. The pressure monitor supervises the vac-
uum of the dewar. Another task of the electronics is to control the vacuum pumps and the
cold heads that are used to keep LUCIFER cold. The cold heads of the closed cycle cooler
need to run asynchronously to minimise vibration transfer to the telescope. The thermal
energy is transported from the cold heads through helium flex lines down to the compres-
sors. Beside the electronics used to keep LUCIFER cold, special heater electronics exists
to control the heat up process of the dewar. The spectral lamps of the Calibration Unit
can be remotely controlled by additional electronics. All electronic boxes are equipped
with their own power supply, are thermally insulated and use chilled fluids to regulate the
temperature. This regulation is done by the rack cooling control electronics that measures
the electronics temperature and controls the flow of the coolant.

The detector control electronics is described separately on page 16. The detector data
is transferred directly via exclusively reserved fibres into the control room. To access the
other electronic systems from the main instrument server in the control room, the serial
data is transcribed by a port server into a TCP/IP communication. Additionally this port
server has the ability of short time data buffering that reduces the risk of data loss.

9Currently 114 of the optional 256 switches are used.
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Type SUN Fire V880 Server
Processors 4× 1.2 GHz UltraSPARC III (8 MB L2-Cache)

1× system service processor
Main Memory 32 GB ECC RAM
Hard Disk 6× 73 GB HDD over internal FC-AL controller
Network 1 Gb Ethernet and 10/100 BASE-T Ethernet
Input/Output 9.6 GB/sec. system bus with 9 full size, hot-swap PCI slots
Frame Buffer SUN PGX 64 8/24-bit
Operation System SUN Solaris 10
Miscellaneous 3× redundant power supplies (1,500 W each)

external FC-AL RAID array

Table 1.5: Overview of the LUCIFER control computer.

1.3.4 The Control Computer

The LUCIFER instrument electronics will be controlled by a single server, that is placed
in an air-conditioned computer room. The detector data is transferred from the custom-
made readout electronics via fibre based transfer channels and fed into the server hardware
with two edt PCI CD-60 interface boards. Each interface board provides a high speed
16-bit parallel DMA channel with a data transfer rate of 60 MB/sec. In the final stage of
extension with both LUCIFER instruments mounted, the server will be equipped with 4
interface boards. For historical reasons of the readout software development process and
the demands of high data IO rates, a SUN computer hardware is needed. The main control
server of the LUCIFER project is a SUN Fire V880 (see Table 1.5). The SUN Fire V880
uses the Solaris 10 OS of SUN. Therefore all software packages have to be developed
for and tested on this target platform. During LUCIFER observation runs this server is
accessed via terminal applications running on workstations that are located in the control
room. This way of interaction allows remote observing, too.

1.3.5 The Detectors

Each LUCIFER instrument is equipped with a HgCdTe Astronomical Wide Area Infrared
Imager-2 (HAWAII-2) detector manufactured by Rockwell Scientific. In contrast to com-
mon CCD detectors silicon with a bandgap of ≈ 1.1 eV cannot be used to detect NIR pho-
tons. The HAWAII-2 hybrid detector consists of a thin IR-sensitive HgCdTe10-layer on top
of a multiplexed readout array which gives direct access to each of the 2048×2048 pixels.
The detector is subdivided into 32 data channels and 4 reference channels. These reference
channels can be used to determine the readout characteristics of the quadrants which con-
tain 8 data channels each. To operate the detector custom-made control electronics is used,
developed by the MPIA. This electronics consists of a pattern generator which is needed
to clock through the pixels accordingly. The pixels of the readout array selected at a time
are directly connected to the individual data channels. The fanout board on which the
detector is mounted pre-amplifies the output signals. Each of the 36 channels is connected
to an individual Analogue/Digital Converter (AD-C). By this separate signal conversion
the data on the detector is preserved. Thus multiple readout modes can be applied to
the detector in comparison to conventional CCD array with destructive and consecutive
signal processing. Effects like the bleeding of saturated pixels along the readout column as

10Mercury cadmium telluride has a bandgap of 0.25 eV – 0.5 eV and a corresponding cut-off wavelength of
2.4µm – 4.8µm. The bandgap is adjusted by the doping process.
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found by CCD detectors do not exists. Although other artifacts like residual ghost images
of previously observed bright stars can be encountered. The detectors of the LUCIFER
project and the available readout modes are described in detail in Muhlack (2006).

1.4 Infrared Astronomy

The electromagnetic radiation in the wavelength range from 1 mm (300 GHz) to 1µm
(300 THz) is called infrared (IR) radiation. With wavelengths between 1µm and 10µm
the near-infrared (NIR) band is located at the lower end of the IR spectrum intersecting
with the upper end of the optical band. The remaining parts of the IR spectrum are the
mid-infrared (MIR) band (10µm – 50µm), the far-infrared (FIR) band (50µm – 0.3 mm)
and the sub-millimetre band (0.3 mm – 1.0 mm). The sub-millimetre band overlaps with
the radio band of the electromagnetic spectrum.

As a benefit of the long IR wavelengths adaptive compensation of the atmospheric dis-
tortion is possible. This allows to achieve the maximum theoretical resolution of a ground
based telescope that is comparable with optical resolutions only reached in space missions.
With increasing computational power as well as faster and more accurate opto-mechanical
actuators Adaptive Optics (AO) will also become available for optical observations.

1.4.1 The History of IR Astronomy

The IR radiation was first discovered by Sir John Herschel in 1800 when dispersing
solar light through a prism onto several thermometers. The detection of radiation invisible
to the human eyes led to many experiments observing the Moon, the planets and bright
stars. In the 1920’s the first systematic NIR observations have been carried out by Seth
Barnes Nicholson and Edison Pettit. Their work was continued by Gerad Peter
Kuiper and Harold Lester Johnson in the 1950’s. With the upcoming techniques to
fabricate artificial semiconductors the doping process was used to produce very sensitive
bolometers. In 1961 Frank James Low presented a gallium-doped germanium detector
that was cooled with liquid helium (4 K) and allowed to carry out low-noise IR observa-
tions at higher wavelengths. By observing at different altitudes on Tenerife 1856 Charles
Piazzi Smyth already found out that the quality of IR observations is strongly connected
to atmospheric effects. Therefore the first efficient FIR observations with gallium doped
bolometers were done during balloon, airborne or satellite experiments.

1.4.2 IR Radiation Mechanisms

Emissions from rotational transitions are the most prominent line emission mechanisms
in the sub-millimetre band. In the MIR and NIR the most common line emissions are
generated by rotational-vibrational transitions in molecules and by recombination. These
recombination lines are dominated by ionised hydrogen and helium atoms interacting with
free electrons. E.g., the low-energy Paschen, Bracket and Pfund series of transitions of the
hydrogen atom generate emission in the NIR wavelength band. Additionally forbidden line
emissions like FeII can be observed.

One of the most common IR continuum radiation mechanisms in astrophysical objects
is the black-body radiation. Following Planck’s law every object radiates in the IR with
an intensity peak between 1µm to 1 mm for temperatures of 2,900 K to 2.9 K, respectively.
These sources of black-body radiation are relatively cold and can be dust, planetary objects
and stars. Bremsstrahlung and synchrotron radiation that is produced in thermal and
relativistic plasmas are other continuum radiation mechanisms in the IR. This kind of
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Centre Width Sky SkyName
Wavelength(µm) (FWHM)(µm) Transparency Brightness

J 1.25 0.3 high low at night
H 1.65 0.35 high very low
K 2.2 0.4 high very low

<3.5µm fair
L 3.5 1.0

>3.5µm high
low

M 4.8 0.6 low high
8-9µm/10-12µm fair

N 10.6 5.0
others: low

very high

Q 21 11.0 very low very high

Table 1.6: IR-windows in the Earth’s atmosphere. Taken in parts from McLean (1997)

radiation is generated in the environment of star forming regions as well as in Active
Galactic Nucleuss (AGNs) of Quasars or Seyfert galaxies.

Ground based observations in the IR are negatively affected by atmospheric effects. In
comparison to the optical band with constantly high transmission rates the atmosphere is
transparent only in few wavelength windows in the IR band (see Table 1.6). These windows
of high transmission rates are separated by opaque bands with high spectral absorption
by atmospheric gases like water vapour, oxygen and carbon dioxide. The strength of these
telluric lines of atmospheric absorption is not necessarily linearly correlated with the air-
mass. At wavelength above 2.3µm the telluric features appear additionally as emission
lines in the spectrum. High resolution spectra in the NIR wavelength range of the atmo-
sphere above Kitt Peak Observatory are presented in Appendix F. The broad emission
bands of rotational-vibrational transitions of hydroxyl (OH) molecules dominate the non-
thermal atmospheric radiation. Excited by UV photons from the Sun a thin layer of OH
molecules in the upper atmosphere11 emits IR photons. The intensity of these emissions
varies shortly within time12. At longer wavelengths this kind of emission is excelled by the
thermal black-body radiation of the atmosphere itself. See McLean (1997). Especially
the water vapour is strongly connected to climatic effects and varies highly with time.
Therefore IR observations are done at dry places and at high altitudes preferably outside
of the Earth’s atmosphere. For ground based observations one needs to reduce the negative
impact of atmospheric influence with adequate and close in time calibration data of the
sky.

1.4.3 Science in the IR-Regime

Scientific observations in the IR regime are very effective for sources embedded in optical
dense medium. In cases of dust covered objects extinction prevents direct visual obser-
vations. The emission of dense molecular clouds that are heated by stars and AGNs are
other bright IR radiation sources. The following science cases are representative for the
widespread use of IR observations.

Search for Exoplanets

The direct imaging of exoplanets in the optical is complicated by the necessary high
contrast ratio between the stellar component and the planet. For Jupiter-like exoplanets

11At an altitude of approximately 90 km
12Intensity changes by factor 2 or higher in 30 minutes
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this ratio is 109 and is increasing for Earth-like objects to 1010. Future space missions
that use e.g., Non Redundant Masking (NRM) or an external occulter to screen the light
of the central stellar component could theoretically reach the required limits (see Levine
et al., 2009; Sivaramakrishnan et al., 2009). A first optical image of a possible
exoplanet is presented in Kalas et al. (2008) showing an object orbiting at 119 AU
around Formalhaut. In comparison to optical imaging of exoplanets ground based NIR
observations could make use of AO systems to increase the spatial resolution. In particular
young exoplanets radiate thermally by converting their potential energy. This effect in
addition to the thermal radiation characteristics of the central star reduces the contrast
ratio for Jupiter-like exoplanets to 104. First direct NIR images of a possible exoplanet
have been presented in Neuhäuser et al. (2007).

The Galactic Centre

In the dense and luminous star cluster at the centre of the Milky Way a very compact
radio source called Sagitarius A* is embedded. Very Long Baseline Interferometry (VLBI)
observations of this source have confined the size of this component to less than 10 light
minutes. To determine the nature of the centre of our Galaxy the contained mass is im-
portant. Therefore diffraction limited observations in the NIR wavelength band are used.
These observations allow to see through the concealing dust and provide high spatial res-
olution. By tracing the Keplerian orbits of the stars around Sagitarius A* the mass was
determined to 3.6× 106 M�. Due to the orbit of the innermost stars this mass needs to
be concentrated within ≈ 10− 20 light hours. Even with a radius 1,000 times higher than
the event horizon of a black hole with a comparable mass13 these observations give the
best evidence for the existence of a super massive black hole in the centre of our Galaxy
(Genzel and Karas, 2007).

ULIRGs / Dusty Starbursts

Another interesting group of objects are the ultra-luminous infrared galaxies (ULIRGs).
Dasyra et al. (2006) observed the stellar kinematics of local ULIRGs in the NIR. The
galaxies of their sample have been selected to show a remaining single merged nucleus.
The results of their observations demonstrate that most of the galaxies in their sample
arise from major mergers between gas-rich spiral galaxies. These merging processes form
elliptical galaxies with random stellar motions. Triggered by the merging process a star-
burst event takes place in the host galaxies and generates IR radiation. Combined with
the emission from an AGN IR luminosities greater than 1012 L� are reached.

The Early Universe

The bright UV and optical transition lines of highly red-shifted objects can only be ob-
served in the IR wavelength band. Therefore the investigation of the early universe e.g.,
highly red-shifted extragalactic objects is done with NIR observations.

13The Schwarzschild radius of a 3.6× 106 M� object is ≈ 1× 107km ≈ 33 light seconds.
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Software Development

T
his chapter describes the software de-
velopment process of the LUCIFER
project. The specified general aspects

can be useful as a base for managing other in-
strumentational software projects by adopting
the described process and model. The chapter
starts with a short overview of modern software
development techniques and includes a descrip-

tion of the applied process. In addition an in-
tegrated environment is presented which assists
the developers in performing the different tasks.
Finally the benefits of the Object Oriented (OO)
programming approach are depicted which lead to
the successful realisation of the LUCIFER Con-
trol Software Package (LCSP).

One of the big issues when developing a control software for a complex instrument is to
stay in control of the software itself. On one hand, the more complex software gets the
harder it is to keep an overview of the different parts of the software and their intended
functionalities. On the other hand a very specific knowledge of the source code is essen-
tial to manage software change requests, to find errors and to remove them. Theoretical
knowledge of software development to choose an appropriate process (see Section 2.2), the
used development environment (see Section 2.3) and the software design (see Section 3.2)
are equal parts in handling the software development requirements.

The Divide and Conquer approach, used by the Romans to control a big empire, is one
of the most used solutions to reduce complexity in computer science. It can be found in
small algorithms as well as in big software packages. A design that divides the software in
small manageable chunks allows isolated handling of these parts. Identification of failures
can be simplified by strong associations between the tasks and the corresponding software
parts. An abstract high level design provides a simple overview that is easy to understand,
even without knowing in detail how a task is solved. This allows to concentrate on only
one complex part at a time while masking out the issues of the other parts of the software.
By defining interfaces the complexity of subsystems is hidden and changes or even their
complete replacement does not affect the software that uses these subsystems. The detailed
design of the LUCIFER Control Software Package is presented in Section 3.2.

2.1 Software Development Models

Going back in time to the beginning of the computerised era, a software developer was
a craftsman. Based on the diversity of computer hardware, software was a product just
built to do one job on one hardware. Most people that had been responsible for software,
came from the electronics engineering companies that built the hardware. Some people
just found their way into business by using computers. Due to the fast evolving computer
sector, software was not able to deal with the increasing complexity of hardware. This
finally led to what is known as the software crisis. One of the major problems was the
lack of documentation. In addition there was no uniform way in solving problems. Pieces
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of code had just been copied and pasted instead of writing reusable code. Only the one
that wrote the code was able to debug, manipulate and change it. Software quality was
so bad in the late 1960’s, starting 1970’s that companies started adopting development
models which had proven to work. Attempts to describe the development process in a
formal way and the starting research in the field of software development models have
been the first steps towards professional software engineering. Shaw and Garlan (1996)
describe this development process starting with a talented amateur that uses a lot of
time and resources. The next evolution step is the skilled and trained craftsman who has
knowledge of established procedures. The last evolution step leads towards the educated
professional that makes use of analysis and theory to guarantee a certain quality standard.
The comparison of software development with other engineering professions indicates that
the last transition from a handcraft to an engineering approach has not been finished yet.
The wide range of proven solutions other engineering domains can rely on is still missing.

With modern software development techniques a wide range of challenges is handled.
The keywords often mentioned in the context of software are quality, reliability, usability,
functionality and cost effectiveness. These keywords are unclear, ambiguous and have no
fixed meaning. E.g., a manager defines the quality of software by its revenue and neglects
the usability of documentation. On the other hand the user appreciates a stable, usable
and well documented software and uses these criteria as quality benchmarking items.
The developers tend to neglect cost effectiveness and concentrate on reusability or code-
style. This example demonstrates how different the valuation of these words and how
inexact their meaning is. To guarantee a certain comprehensible level of quality in the
end, the whole process must be standardised and methods to measure quality need to
be formulated. These standardisation efforts lead to an approach where detailed planning
come to the fore instead of cobbled solutions. E.g., ISO 9000/ISO 9001 can be used to apply
a certified quality management, or ISO 15504 defines a standard to improve the software
development process itself. Nowadays people still tend to rate software by its result and
the represented functionality instead of caring about the internals. These people neglect
that tidy internal structures lead to better changeability until they find out that a small
structural software change requires an entire re-engineering.“It isn’t enough for a computer
to produce the correct outcome. Other software qualities are also important and can be
achieved by careful structuring.” (see Shaw and Clements, 2006)

There are several development models that can be used to structure software cre-
ation. The Build and Fix Model is just the unstructured approach that has been used
by every programmer. It starts with an idea and simply implements the developers own
requirements. Winston Royce introduced in 1970 the first formal description of the
Waterfall Model (see Royce, 1970). In this model the progress flow follows the phases
from top to bottom, comparable to water flowing down a waterfall. Even though the
Waterfall Model was published by the author as a process that is not feasible and cost
efficient for larger projects, this model has widely become accepted. The Lifecycle Model
(see Pomberger and Blaschek, 1993) and the V-Model (see Bröhl and Dröschel,
1993; http://www.v-modell.iabg.de, 2009) are other common approaches to structure
and improve the development process. The V-Model is used by the German federal ad-
ministration to manage software development. It opposes the defining/planning phases to
the phases used to test and validate the product. Several specialised development models
exist that try to address the different aspects that arise during the software development
process. For example the Spiral Model presented in Boehm (1988) takes special care of
the risks and costs of a software project while the Incremental Build Model by Balzert
(1998) covers the aspect of the late start of coding. Further information on development
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models can be found in the literature e.g., Zuser et al. (2004). The previously mentioned
development models are divided into phases. By breaking down the software development
into manageable sections the complexity in understanding the whole process is reduced.
The following phases can be treated together as composed stages of project planning,
creation and verification.

• Analysis and Design Phase

• Coding and Implementation Phase

• Testing and Verification Phase

As these phases are part of the software development model of the LCSP the following
subsections contain a detailed description.

2.1.1 The Analysis and Design Phase

After gathering the project related requirements and composing the specifications of the
project, the individual tasks are analysed. This is done by generating and examining
concretised use cases. During the analysis phase the use cases are refined by breaking down
their activities. Another important part of the analysis phase is to carry out a feasibility
study and to evaluate whether other, already existing products could be included. The
result of the analysis phase is a hardware independent description of the functionalities.
Any kind of information on the technical realisation is omitted.

As a result of the inspection of the requirements, a high level design is created. In
successive steps of the design phase, this coarse design is more and more refined until
a design exists on module level. This can be used as a blue print for the coding phase.
The final design should contain all interface specifications that are necessary to formulate
the module tests. Part of the interface specification is the definition of user interactions,
which may lead to a preliminary Graphical User Interface (GUI) without functionality.
This specification should also state clear boundaries between the modules and a stringent
module interaction policy. This easily allows to distribute the development of the different
modules between independent working groups.

One possibility to formalise the results of the analysis and design phase especially of an
Object Oriented (OO) software solution is given by the Unified Modelling Language (UML).
See Section 2.4 for more details on the OO programming paradigm. The best industrial
engineering practices to model and describe a complex system are combined in UML. This
unification is closely connected to the work of Jim Rumbaugh, Grady Booch and Ivar
Jacobson called the Three Amigos. They started with individual methods using their own
syntax and semantics. As their methodology was evolving, they recognised the similarities
of their approaches and started to unify syntax, semantics and procedures. Initially UML
was intended to be used for OO software analysis and design. Nowadays UML is very
flexible, scalable and capable of describing any kind of system, not necessarily limited to
software systems. In September 1997, UML was standardised in its first version by the
Object Management Group (OMG) Object Analysis and Design Task Force. The OMG is
also responsible for the CORBA1 standard.

Since then the modelling approach of UML has been evolving and has become an
accepted industrial standard. UML comprises a wide range of diagrams to specify, visualise
and document any kind of problem and its solution. This unified language consists of clearly
1Common Object Request Broker Architecture (CORBA) specifies a middleware architecture that allows
distributed server-client interaction in a heterogeneous environment.
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formulated semantical elements that structure the problem solving process. One of the big
advantages of UML is to provide specialised views with individual capabilities to assist
the problem analysing, solving and documenting process. The view of the user is covered
by the use case diagram type, while the environment is examined with the deployment
diagram type. To handle the implementation issues the component diagram exists. For a
more detailed structural view of a problem class diagrams can be utilised. Behaviour can
be modelled with sequence diagrams, collaboration diagrams and activity diagrams. More
information on the different diagram types can be found in Alhir (1998) and Pilone
and Pitman (2005).

2.1.2 The Coding and Implementation Phase

The coding phase is used to transfer the design of the previous phase into an executable
software solution. During the coding phase weak parts of the software design are revealed
and may induce a re-analysis of the design. Another important task during the coding
phase is testing. The strong interaction between the tasks of the coding phase and the
testing phase makes a clear separation difficult. Coding, module design and module testing
rely tightly on each other.

As a result of the coding phase the source code is created. Although the source code
is a very important part of the software product, other results of the coding phase aren’t
less relevant like the documentation and the layout of the source code. It is also important
to pay attention to stability, flexibility and reusability of the produced code. To assure a
certain level of documentation and code style automated tools can be applied. The tools
used for the LUCIFER project are given in Table 2.3. Another important aspect of the
coding phase is the change management. It allows to manage and trace back software
changes and provides unique version information for each stage of development of the
sources, configurations and setups.

Several strategies exist on how to implement the design. In the top-down approach, the
developer starts at the highest level of the software. This allows to present a GUI in a very
early project phase. For a first test version of the software the non-existing modules need to
be replaced by inoperable dummies, which satisfy just the module interface specification.
In contrast the bottom-up approach to create the source code, starts at the bottom of the
design, goes up level by level and connects functionalities until the software is ready for
release. This reverse approach needs a long time prior presenting the first GUIs. Problems
that arise during the assembly of the individual modules show up in a very late phase of the
project and may delay the completion. On the other hand, errors of the analysis and design
phase that manifest during coding, do not lead to a re-design and re-implementation of
the higher levels as they would in a top-down approach. The bottom-up implementation
strategy was used for the LUCIFER Control Software Package (LCSP). Towards the end
of the LCSP implementation, multiple engineering interfaces have been developed in order
to support the engineers in assembling the LUCIFER hardware. This strategy enabled
the engineers to test the low level software modules together with the newly produced
hardware and gave additional time for the development of higher level software parts.

2.1.3 The Testing and Verification Phase

The verification and testing of software is the most important task to guarantee a certain
level of quality. It is important to define the targets and procedures before testing starts.
Continuous testing significantly improves the software and reduces the amount of undis-
covered errors. Therefore in each development model of the previous section there is a
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dedicated software testing and verification phase. Software tests are done to reveal errors
of the coding phase and to demonstrate that the software complies with the requirements.
The use cases that have been driving the development process, define the functionalities
of the software that have to be verified.

Test strategies can be divided into white-box and black-box testing. Which strategy
is used depends on the available module descriptions. Black-box testing concentrates on
testing the interface specification and ignores any internal technical details. White-box
tests use the knowledge of the internal implementation structure to define the test cases.
The module specification allows to test every logical path instead of just testing the in-
terfaces. Therefore errors that occur during a black-box test are more difficult to localise
in comparison to errors found with white-box tests. Additionally one also distinguishes
between structural and functional tests. Structural tests are valuable to examine whether
the software was assembled correctly and modules interact as intended. The wide range
of structural testing techniques contains tests for system performance (e.g., stress tests),
tests for system execution, system recovery, operation, compliance and system security.
In functional tests the focus is on the system specification. Functional tests are tests of
the compliance with the requirements, correct error handling, computer-user interaction
and data exchange between subsystems. regression testing is an important functional test
during the coding phase. These tests ensure that changes made to one subsystem do not un-
intentionally interfere with other subsystems. Automated tools can be used to implement
Regression testing into the software development process (see Section 2.3). See Perry
(2006) for practical applications of the different test methods.

Simulators are often used to test complete software systems. A simulator was built to
test the software of the LUCIFER project. This virtual LUCIFER instrument is described
in Chapter 8. The complexity of a simulator depends on the completeness of the software
system required to execute the system tests. This kind of simulators basically creates and
evaluates data input and output. Most often simulators are limited to only one kind of
input, e.g., only keyboard or mouse interaction is considered. In cases with a very high
reliability level of the system, e.g., nuclear power plant or aircraft industry, the complexity
of the simulator can easily reach the level of the tested system itself.

For any kind of testing it is important to keep in mind: “Program testing can be a very
effective way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence.” (Dijkstra, 1972)

2.1.4 Other Important Development Tasks

Beside an adequate development model several other tasks need to be taken into account
in order to create a successful software solution with a specific guaranteed level of quality.
Every software project needs a management to administrate and supervise these tasks.
Beside the scheduling of tasks the management has to ensure that the developers fol-
low the predefined proceedings. In order to be able to define the development process a
manager needs to have theoretical knowledge of quality management standards, software
design and fundamental programming techniques (see Zuser et al., 2004). Missing of
abstraction and breaches in the approach of solving tasks are the most common issues to
deal with. The chosen development process has to be open for regular changes of the soft-
ware. An appropriate documentation is fundamental to allow for later changes by different
programmers. By enforcing a reusable design and encouraging the developers to generate
frameworks instead of single software solutions, the quality and value of the developed
software can be increased. The process of supervising the developers can be improved by
using automated tools to control the quality and to measure e.g., the complexity of the
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source code (see Section 3.5). A wide range of automated tools can also be used to test
software and to find out whether the software complies with its requirements. The tools
used to create the LUCIFER Control Software Package are described in Section 2.3.

2.2 The LUCIFER Control Software Development Model

It’s most important for a development process to match the size and requirements of the
software project. A process needs to be flexible for adjustment to the project. An oversized
process most often includes a wide range of bureaucratic workflows that minimise efficiency.

The development process of the LUCIFER software can not be described by a monolith-
ical model due to numerous changes within the project realisation time. In the beginning
there was no model defined and the software was developed by applying the Build and
Fix Model. First approaches to implement the software requirements were programming
language dependent and started without an analysis and design phase (see Jütte et al.,
2002).

There were several major issues the LUCIFER software project had to deal with. First
of all only a few requirements were defined in the beginning of the project. Partially this is
a consequence of the uniqueness and technological challenges of the LUCIFER instrument.
Building a functional scientific instrument without the experience of a prototype is a usual
case in astronomical technological projects. Of cause there are comparable instruments,
but each instrument has its own specifications. No standard software solution exists that
would just need some modifications to comply with the requirements of any instrument.
The requirements of the LUCIFER Control Software Package are discussed in detail in
Section 3.1. The next problem to deal with are the very limited human resources. This
demanded from each team member to work in the different roles of an analyst, designer
and programmer. Zuser et al. (2004) defines such a unique project like LCSP as a large
project and suggests to have at least 40 team members. This amount of staff is definitely
adequate for space missions, for a ground based project like LUCIFER a few team members
should be enough. For other pure software or data mining projects the number of required
personnel could easily be larger. The LUCIFER software project started with 1 person
and had a maximum of 4 members actively developing the software. Missing requirements
and a small development team can also be found in other projects. These surrounding
conditions needed to be considered to find an appropriate development process.

The final LUCIFER development process presented in Jütte et al. (2004a) and
Jütte et al. (2004b) is an adoption of the Unified Process. Ivar Jacobson started 1987
the development of such an OO process. This development was integrated in the Rational
Process. Rational, Inc. published several papers concentrating on architecture oriented
software development as well as on articles describing an incremental and iterative process
(see Figure 2.1). The Unified Process was published in Jacobson et al. (1999). A
detailed analysis of the requirements is the key element of the Unified Process. The design
of the software is based on the use cases that are a result of this requirement analysis.
By incorporating the same use cases the test plan for the verification phase is build. This
demonstrates how the requirements affect the whole development process and how the use
cases connect each phase of the Unified Process.

In the beginning of the LUCIFER project the requirements have never been defined
in form and content. Only a few instrument hardware specific requirements existed (see
Section 3.1). Therefore these specifications needed to be gathered continuously by the
software engineers. With the progress of the project new use cases came up and had to be
taken into account. As a result of the incremental and iterative proceeding of the Unified
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Figure 2.1: Combined incremental and iterative software development process of the LU-
CIFER project. (based on Kruchten, 1999)

Process these new requirements are added in the next process cycle. With an overall design
that is open for module changes the Unified Process does not require to step back to a
previous phase as demanded in the V-Model or the Waterfall Model. With each cycle
the quality of the design improves and the code of the project advances. This allows
an early release of the software. Due to the repeated cycling through the development
phases the Unified Process could be easily parallelised by concentrating on only one use
case of a module. This offers scaling of the human resources by assigning one developer
to one task. With an increasing number of software engineers the overall speed of the
development process could be raised. This scalability of the Unified Process makes it ideal
for instrumentational software projects where the number of the developers fluctuates.

To profit from the benefits of the Unified Process the global design of the software ar-
chitecture needs to be very flexible for changes. Without a flexible design new requirements
could result in re-design and rewriting of already existing modules. Then the advantage
of the Unified Process in comparison to the V-Model or the Waterfall Model would be
lost. The prominent role of the architecture is at the same time weakness and strength of
the Unified Process. An insufficient design would lead to many avoidable changes, while a
strong and flexible design would allow fast and parallel development.

2.3 The Integrated Development Environment

A customised Integrated Development Environment (IDE) for the LUCIFER project was
created by combining several tools. Table 2.1 provides an overview of the used tools.
The requirements of the LUCIFER readout hardware and the heterogeneous computer
infrastructure demanded that the development environment runs under multiple Operating
Systems (OSs). Windows2 and Linux 3 have been used for software development while
Solaris 10 4 was the target platform (see Section 1.3.4).

To provide version management for the analysis and design phase as well as for the
source code, a Concurrent Versions System (CVS) repository was created. CVS is based

2OS for personal computers, developed by Microsoft.
3Free multi-plattform and multi-user OS based on UNIX philosophy. UNIX was built in the early 1970s
at Bell Laboratories to support software developers.

4UNIX OS of Stanford University Network (SUN) Microsystems, a leading manufacturer of software and
computer hardware.
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Tool Plug-In Scope

Together (built-in) – analysis and design
– UML diagram creation
– coding/refactoring
– audits/metrics

Enterprise Architect (built-in) – analysis and design
– UML conform modelling

Eclipse (built-in) – coding/refactoring
– CVS repository access
– JavaDoc documentation
– integration of Java compiler/debugger
– integration of Ant build tool

JUnitRunner – automated JUnit tests
DBEdit – database access

– SQL statement evaluation
XML viewer – XML editing/verification
Genady’s RMI – registry inspection

– automates skeleton and stub creation
Checkstyle – SUN conform code style inspection
eSpell – spellchecker
Metrics – generating metrics

Table 2.1: Overview of the different tools of the LUCIFER development environment.

on the Revision Control System (RCS) and provides command line tools for versioning
on almost any OS. Another advantage of CVS is its easy way of integration into modern
development software. See Purdy (2001) for more information on using CVS.

At the beginning of the project, Java5 was defined as the main programming language.
Therefore the tools of SUN for compiling, distributing, debugging and system execution
have been used. The conventions of SUN for naming and documenting were adopted and
own tools to provide special documentation tags have been created. By extending the
existing annotations standards the JavaDoc tool was enhanced to protocol the history of a
file, to provide examples on module usage, to protocol the change history and to document
special requirements of a module. See Appendix D for a complete list of project relevant
JavaDoc annotations. To automate the build process the Ant tool was added to the IDE.
Ant is part of the Apache6 project. By defining the build process in an independent
configuration file a repeatable build and software distribution procedure was achieved. In
Appendix C the Ant build file of the LCSP is presented. Due to the broad acceptance and
industrial usage of the Ant tool, many development solutions provide an interface. Ant is
comprehensively described in Tilly and Burke (2002).

To assist the developers in executing automated unit tests, JUnit provides a Java
based framework. JUnit allows to bundle tests together and to protocol the test results
in a compact way. By automatically setting up a test environment and cleaning up at the
end, no user interaction is required. To develop tests with JUnit, the expected results of

5OO, hardware independent programming language developed by SUN Microsystems.
6Apache is an Open Source web server software package that is maintained by one of the biggest Open
Source communities and includes a wide range of software frameworks.
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method calls need to be specified. This enables the testing environment to compare results
and determine variations. Ant provides special tasks for unit testing with JUnit, which
allows to include the regression testing into the build process of a software package. Beck
(2005) and Link (2003) provide a short introduction on how to use JUnit.

Especially when developing distributed applications, it is important to have tools to
observe the running distributed services and execute simple commands. The services of the
LUCIFER project are based on Remote Method Invocation (RMI) of Java. All services are
managed by a central registry. Therefore the registry inspector of Genady Beryozkin
(www.genady.net) was included into the development environment. More information on
the distributed service architecture of the LUCIFER project can be found in Section 4.1

Nowadays a development environment is more that a simple editor. Programmers in
the 1970s have got used to simple line oriented editors. In the 1980s page oriented editors
came to the fore. Editors like Vi7 or Emacs8 have been the standard software to develop
applications for a long time. Over the years these page oriented editors have been im-
proved and provided syntax highlighting, code completion and compiler integration. The
IDEs of today have the same capabilities of syntax highlighting and code completion, too.
Compiler, linker and debugger functionalities are also integrated.

Modern IDEs are characterised by their possibilities to attend the whole development
process. They provide a user friendly way to trace and debug software, to manage resources
like software documentation and to cooperate with other team members. An ideal environ-
ment can be fully adjusted to the specific needs of each phase of the development process.
This includes changing the graphical layout to assist analysts, designers or developers best.
It is important to have efficient tools to speed-up the development process, e.g., to search
for pieces of code, references and occurrences, even in different files or to re-factor software
structures. Current IDEs are able to transform a UML design into source code and vice
versa. Generated code contains only empty structures that need to be filled. These skele-
tons save time that could be better spent on more challenging tasks. In addition to this
build-in multitude of functionalities flexible interfaces allow to integrate other software
solutions, like version management or build tools.

The LUCIFER project started by using Together of TogetherSoft, Inc. which was later
sold to Borland Software Cooperation9 an American company founded by Philippe Kahn,
a former French math teacher. Borland Software Cooperation is known for the Turbo
Pascal development environment. Together is a graphical analysis and design tool, based
on the UML notation. Although Together is intended to support the first two phases of
the Unified Development Process, it provides an extensive coding environment with tools
for refactoring, source code auditing and metric analysis. The metrics of the LUCIFER
project are discussed in Section 3.5. An outstanding feature of Together compared to its
competitors was the early availability of generating class diagrams and activity diagrams
from existing source code by maintaining the UML notation standard. Another benefit of
Together is its platform independent realisation with the Java programming language and
therefore the possibility to run on the project specific OSs.

As the LUCIFER project evolved, the project migrated to the Eclipse development
environment. Eclipse is a software development platform that consists of a conventional
IDE combined with a very flexible plug-in system. Table 2.1 lists all used Eclipse plug-ins.
Even though it is written in Java Eclipse supports the realisation of software projects in
7Vi (visual), a page oriented text editor developed by Bill Joy in 1976. Vi is one of the most common
command line editors in the UNIX world.

8Emacs (editor macros) started 1976 as a collection of macros at the Massachusetts Institute of Technology
(MIT) and was reimplemented and improved by Richard Stallman in 1984.

9The name Borland was inspired by the American astronaut Frank Borman.
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C, C++, Python, Perl, Cobol and many more. It can be even used to manage database
servers, to create web pages or to write LATEX files. Eclipse started as a project of the
Canadian IBM10. Today Eclipse is an Open Source project managed by the Eclipse Foun-
dation. Beside the extensions, already mentioned in this section, a plug-in to control the
source code quality and to follow the SUN Java coding standards was added. This Check-
style plug-in provides a wide range of configurable rules to monitor during coding, starting
with simple code indention and formatting and ending at possible coding problems like
missing variable calls. Breaches of the defined coding standard are highlighted automat-
ically. The LUCIFER project is an international project. Thus code and documentation
have to be written in English. To fulfil this requirement adequately the eSpell plug-in in-
tegrates a simple spell checker. To improve the access to the databases used by the control
software, the DBEdit plug-in was added to the Eclipse IDE. This plug-in contains a viewer
to browse the data and tools to evaluate SQL11 statements. Because the XML12 data for-
mat is extensively used for all persistent configuration purposes within the project, the
XML Viewer plug-in is applied. Finally, to observe the metrics of the LUCIFER Control
Software Package the Metrics extension was integrated in the IDE. This plug-in allows
the evaluation of numerical observable parameters of the source code on the fly. By mon-
itoring parameters like the comment ratio or line numbers per method, the quality of the
produced software can be increased. In Section 3.5 some basic metrics of the LUCIFER
project are discussed.

2.4 Object Oriented Software

The OO programming paradigm is an approach to deal with the increasing complexity of
software projects. In a first approach to structure software functionalities where collected
in libraries allowing to spread the source code across different files. The purpose of the
OO paradigm is to map the real world in the software. This is done by bundling object
representing data (attributes) with object manipulating functions (methods). Due to the
fact that humans are accustomed to categorise objects in their daily life, this bundling
is a user-friendly way of modelling and representing problems. An object should not be
confused with a simple data structure. It is characterised by the possibility to manipulate
its data. Furthermore objects can encapsulate their data by using methods and by hiding
non-public functionalities. Therefore the visibility of methods and attributes can be defined
in order to control their accessibility in the project. A class defines the structure and the
interfaces of an object on the other hand an object is a real instance, containing own
data. E.g., person is a class whereas the reader of this thesis is an instance of person
and for this reason an object. By providing the ability of abstraction and inheritance the
complexity of the software design can be significantly reduced. A functionality exists only
once and therefore typical copy and paste errors can be prevented. OO languages also use
polymorphism to access inherited objects as objects of their super-class. Inheritance allows
to overwrite the methods of a super-class. OO software can be reused easily, because all
necessary data and methods are bundled together. If a person class is needed in another
software it can just be imported due to the small number of dependencies with other

10International Business Machines (IBM) Corporation is one of the world leading hardware, software and
service providers in the sector of information technologies.

11Structured Query Language (SQL) is a standardised language to define, query and manipulate data of
relational database systems.

12Extensible Markup Language (XML) is a language to structure data by utilising user-defined markup
elements.
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classes. For that reason the person class should be designed and built to exist alone and
contains all necessary information and methods.

Most of the mentioned benefits of the OO approach already existed before OO lan-
guages appeared. In contrast to other approaches the OO programming paradigm induces
a deeper structural analysis of the problem domain and therefore produces a better design
and source quality. Nevertheless it is still important to obey fundamental programming
guidelines like information hiding, separation of concerns and reusability by modularisa-
tion. This means that the use of an OO language does not automatically guarantee a
successful software project.

2.4.1 History of the Object Oriented Paradigm

Today, the OO paradigm is a common programming technique. Back in the early 1960s,
when Simula was introduced by Ole-Johan Dahl, Bjørn Myhrhaug and Kristen
Nygaard, it was a revolutionary approach on writing software. Simula was developed in
order to generate simulation programs. In Dahl et al. (1968) all central characteristics
and constructs of a modern OO language have already been mentioned. The concept of
classes to bundle the attributes with methods as well as to inherit properties and func-
tionalities was introduced. Information hiding and dynamic object creation represent other
fundamental concepts that can be found in other OO languages. Because the instances of
Simula classes act like coroutines, they could be used to simulate concurrency. Until the
1970s Simula was just used only by a small community. This changed rapidly when the
OO paradigm was used as base of Smalltalk. The innovative idea of OO programming
was transferred into other languages like C 13. Stroustrup (1986) started his work on
developing C++ in 1979 by upgrading C with OO structures and functionalities. From
that point on, the OO approach became a standard and is nowadays part of languages like
Python14, C++, C-Sharp15, BETA16 and Java.

2.4.2 The Java Programming Language

James Gosling, working at SUN Microsystems, started the development of the Java
programming language in 1991. In 1995 the first version of Java was published. Since 2007
Java is Open Source. One of the main intentions of Java is to provide a programming
language independent of the hardware platform and the OS, that allows developers to
write software once and run it anywhere. Therefore the source code is not translated into
a native hardware dependent machine code. Instead the compiler generates a hardware
independent byte code for a virtual machine. These virtual machines are provided free of
charge by SUN for many different hardware systems. Certainly interpreted code cannot
be as fast as highly optimised hardware dependent code. But a highly optimised virtual
machine is as fast as any conventional compiler that generates hardware code. The op-
timisation of the virtual machines is achieved by implementing different techniques, like
just-in-time compilation of byte code to hardware code and dynamic recompilation based

13C is a programming language, developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories.
It was initially written to develop the UNIX OS.

14Python is a high level programming language developed in the 1980s by Guido van Rossum at the
National Research Institute for Mathematics and Computer Science in the Netherlands.

15C-Sharp is developed by Microsoft and supports multiple programming paradigms like functional, im-
perative and OO programming.

16BETA is a pure OO programming language originating in the Scandinavien roots of the Simula language
(see Madsen et al., 1993).
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on runtime analysis data. In comparison to other programming languages, Java was de-
signed to be a true OO language instead of just having additional OO features. Although
the notation style of Java looks similar to C and C++, there are major differences be-
tween these languages. Java implements natively an exception handling that provides an
extreme robustness. Exception handling together with memory management prevents run-
time errors from interfering with the OS. Errors can be traced back and handled. These
functionalities combined with the ability to run an application in a so called sand-box that
manages the hardware resources, makes Java a save language from scratch. It is designed
to work in a distributed environment. Since many years SUN has a leading position in
network technologies and therefore implemented a networking interface and distribution
mechanism which is simple to use and efficient. Due to the fact that Java runs in a virtual
machine the management of memory or multiple processors needs no special treatment.
Multithreading is another feature that is natively included via simple mechanisms to cre-
ate, synchronise and terminate threads. In comparison to other programming languages,
where the developer has to take care of memory allocation and deallocation, Java provides
an automated garbage collector. This garbage collector observes the state of objects and
decides which memory blocks are no longer used and can be released. Java also includes
a comprehensive collection of function libraries and interfaces. Therefore nobody needs to
implement basic data structures like Vectors or Hashtables or has to write code for a well
known algorithms like Quick Sort or string formatting methods.

The requirements of a distributed and heterogeneous system as well as the fact that the
control software has no real-time requirements lead to the choice of the Java programming
language as basis of the LUCIFER Control Software Package (LCSP) (see Jütte et al.,
2006). It is not negligible that the time to learn this language and the development time
are shorter in comparison to other programming languages. Finally the stringent way of
OO programming helps to avoid structural errors and to improve the code quality.
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The Control Software Basics

D
ue to the cutting edge design of the LU-
CIFER instrument the control software
is unique and is developed as a proto-

type. This chapter presents the LUCIFER Con-
trol Software Package (LCSP) and starts with
the description of the very specific software re-
quirements. Next the chosen multi-tier architec-

ture of the LCSP is outlined. Directly connected
to a successfully operating distributed system is
the service start mechanism. This software start
framework together with the used external soft-
ware packages is detailed. Finally the LCSP is
analysed by discussing basic metrical numbers.

Before starting to describe the design and architecture of a software solution it is helpful
to discuss the requirements. IEEE 830 gives a standard to record these software require-
ment. As a prototype, the LUCIFER project has to deal with changing and late defined
requirements. Therefore no uniform document that contains all the requirements exists.

3.1 The Requirements

Software requirements can be coarsely classified as user or developer requirements whereas
both classes may intersect. Another classification distinguishes between functional and
non-functional requirements. In the following the requirements are classified even though
some may also fit in other classes. The first of these classes to discuss contains the user
requirements.

The users of the control software can be either observing astronomers or technical staff.
For these users the LCSP needs to . . .

. . . [U1] allow to conduct efficient observation runs. Therefore overhead times created
by the software as well as software re-starts or system crashes need to be minimised.

. . . [U2] implement a quick and simple re-start procedure of the complete control software
or parts of it. This is essential in case of software system failures and/or power
outages.

. . . [U3] provide a simple configuration mechanism that allows to change the software
execution characteristics without the need of re-compilation.

. . . [U4] control the mechanics of the instrument. The complexity of the software - hard-
ware interaction must be hidden from the user while providing all necessary func-
tionalities to the engineers. On one side the astronomer issues complete instrument
setups while on the other side the engineer has to control individual motors to deter-
mine configuration parameters. An early version of the control software is mandatory
to enable the engineers to build up the opto-mechanical units of the instrument and
carry out test-runs in the laboratory.

35
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. . . [U5] interact with the electronic devices that control/monitor the environment of the
instrument. A part of this electronics is off-the-shelf while the rest is custom-made by
the participating institutes. This custom-made electronics requires special treatment
because its interfaces may change with further developments.

. . . [U6] protocol and preserve all instrument states and parameters. Additionally the
software has to supervise the instrument and its environment and create alerts if
parameters run out of their specifications.

. . . [U7] have a telescope interface that allows to observe the designated astronomical
targets and to perform the necessary telescope motions.

Form the developers point of view the LCSP needs to . . .

. . . [D1] log system status and error messages. This logging is important for tracking of
system status as well as for debugging.

. . . [D2] allow a simple recording of communication between the software and the control
electronics in order to analyse the data while debugging.

. . . [D3] run without instrument hardware to carry out integrated software system tests.
Therefore an emulation of the hardware-software interaction is required.

. . . [D4] be built within a unified software build cycle. This allows several developers to
work independently on the software. A quick and simple software compilation and
distribution mechanism is necessary for a fast bug-fixing cycle.

. . . [D5] be written in an easy to use and multifunctional development environment.

The previously presented requirements describe functions of the control software. From
the non-functional point of view the control software needs to . . .

. . . [F1] run on a SUN computer hardware. The detector readout electronics and software
are a development of the MPIA. For historical reasons this software runs only on
SUN computers.

. . . [F2] communicate with the electronics via a port server. This port server translates
the serial RS232 data in a TCP/IP communication.

. . . [F3] use a database to store all messages, system states and communications. This
database storage allows for later analysis with special data query tools.

. . . [F4] run as a distributed system. This allows to distribute the tasks and system load
on services that may run on individual computer hardware. Distributed computing
enables the user to run multiple GUIs independently from the control software.

. . . [F5] provide a central configuration mechanism. Especially in a distributed environ-
ment the configuration management can become confusing.

. . . [F6] use a unified persistence storage mechanism. All data should be stored in XML
files.

. . . [F7] have an intuitive and clearly arranged GUI that minimises the risk of faulty
operation by the user.
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In the beginning of the LUCIFER project only the requirements [U4], [U5], [U6], [F1] and
[F2] had been specified. The other requirements are the result of long discussions during
a requirement gathering phase or arose during one of the software development cycles
(compare Chapter 2).

Finally there are several adjectives left that are likely used to describe software without
explicitly specifying their semantic. The following requirements with their project specific
interpretation are some of these more general software characteristics.

efficient Efficiency for the LCSP means to use as much as possible of the night time for
observations. Therefore tasks should be done in parallel and controlling overheads
need to be minimised. The limiting parameter in controlling the instrument should be
the communication speed between the electronics of the instrument and the control
computer as well as the motion time of the opto-mechanical parts. Additionally
efficient usage of external packages or libraries and concentration on implementing
the necessary tasks reduces the manpower.

reliable To create a reliable software solution GUI, data structures and data manipu-
lation methods need to be separated. A distributed system improves reliability by
separating tasks on individual services. Like in modern OSs a faulty service can be
restarted without the necessity of restarting the whole system. An appropriate ex-
ception handling mechanism should be implemented in the control software that e.g.,
automatically reacts on software-electronics communication errors, generates time-
outs or restarts broken services. Another important part is to track the instrument
state reliably for later data analysis.

documented All classes, attributes and methods need to be well documented to allow
for later changes and debugging. Thereby it is important to document the complex
behaviour of methods or the data structures used. Although this may seem obvious
documentation is frequently neglected. A good documentation is important to have
a maintainable and extendable software.

maintainable To increase maintainability simple approaches are preferred. An elaborate
but compact architecture enables the developer to understand the concept of the con-
trol software. Each service should be responsible for only one problem domain. This
simplifies the complexity of a single service enormously and allows fast allocation of
problems.

extendable The chosen design needs to be flexible to add new functions/services. A clear
structure of the source code is important to be able to add new functions. When
designing software packages abstract classes and interfaces should be preferred to
generate external access points.

secure In the domain of the LCSP security does not mean to protect the instrument from
hackers and to encrypt the inter-service communication. Security means to ensure
that the observing astronomer could do no harm to the instruments hardware. At all
events it has to be ensured that observations are not interrupted by faulty performing
services. In case of several connected GUI clients it has to be guaranteed that each
client displays self-consistent information.

Based on these requirements the architecture of the LCSP was developed.



CHAPTER 3. CONTROL SOFTWARE BASICS 38

Figure 3.1: The Architecture of the LCSP. Boxes represent the services of the system if not
specified else. Doubled boxes are used if separate services exist for each of the
LUCIFER instruments. Translucent objects symbolise the use of external software
packages. Dashed boxes are used for currently not existing services.
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3.2 The Architecture of the LCSP

Dijkstra mentioned in his 1972 Turing Award lecture the virtues of a software developer.
“We shall do a much better programming job, provided that we approach the task with a
full appreciation of its tremendous difficulty, provided that we stick to modest and elegant
programming languages, provided that we respect the intrinsic limitations of the human
mind and approach the task as Very Humble Programmers.” In his eyes a developer should
aim for a simple and comprehensible solution with clearly readable source code. Software
developers tend to use large and oversized development processes and powerful frameworks
even without the necessity for their use. Reasons for this miss-use are in many cases fast
changing hypes of new techniques and the developers compulsion to integrate as many
buzzwords as possible into the software project. In the LUCIFER project a simple and
flexible development process was chosen (compare Section 2.2). The software architecture
of the LCSP was designed to be as simple as possible and at the same time very flexible. In
Tate and Gehtland (2004) arguments for lightweight software architectures and against
heavyweight enterprise solutions can be found.

Multi-tier client-server and Service-Oriented Architectures (SOAs) are examples of ex-
tremely effective design patterns (see Shaw and Clements, 2006). Even though SOAs
get out of style, individual services provide an easy way to separate tasks, to increase
abstraction and reusability, to allow autonomous execution and to encapsule complex al-
gorithms as well as data structures. A typical example of SOAs are modern UNIX -like
OSs that gain stability with independently start-/stoppable daemons.

A multi-tier architecture allows to hide complexity within a tier as well as to provide
simple and powerful functions to services of a higher tier. This proven concept was applied
in the development of the high level service architecture (see Figure 3.1). A distributed
system was chosen to increase scalability and interoperability of the software (compare
[F4]). The individual services are grouped into four tiers, the System Tier, the Control
Tier, the Instrument Tier and the Operation Tier.

The System Tier (see Chapter 4) contains all frameworks to run and control a dis-
tributed system, to allow central configuration management, persistent storage of data in
a database and message generation in order to track the state of the system. Beside the
basic services for messages and configuration management, frameworks to implement in-
ternationalisation and resource bundling as well as tools to improve source documentation
and message database-mining are included in the System Tier. This tier is responsible to
comply with the requirements [U2], [U3], [D1], [F3], [F5] and [F6].

In the Control Tier (see Chapter 5) the hardware-software interaction is reflected.
Therefore an RS232 communication framework is used in each of the hardware controlling
services (see [D2] and [F2]). These services are grouped in environment supervising services
and into services that communicate with the motion control electronics (see [U4] and [U5]).
As a central logging mechanism this tier contains a service that tracks the instrument
state (requirement [U6]). All hardware interacting services notify this logging service.
The detector readout software GEIRS by Clemens Storz and an ICE interface to the
telescope (see [U7]) by José Borelli are also part of this tier.

The next tier is the Instrument Tier (see Chapter 4). This tier is responsible for hiding
the complexity of the motion logics needed to set up the opto-mechanical components of
the instrument. Therefore this tier is based on the usage of the hardware communication
provided by the Control Tier. As a central part of this tier the sequence execution frame-
work provides easy composing and execution of complex motion sequences. This tier is
fundamental to an efficient usage of the LUCIFER instrument (see [U1]).
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As the topmost tier the Operation Tier (see Chapter 7) contains all services needed to
operate the instrument. This includes the coordination of the services of the Instrument
Tier and the supervision of the instrument environment as well as the interaction with the
external software packages of the readout and telescope control software. The GUIs used
to grant engineering access as well as an observations scripting mechanism are another
part of this tier. This tier complies with the requirements [U1] and [F7].

Due to the massive use of frameworks the development of a service could be min-
imised on solving its core tasks. Remote service distribution, database access, configu-
ration management, message creation and handling, XML file access, RS232 hardware
communication, logical sequence execution and even parts of the GUI programming is
done in frameworks. Thus every service is based on at least one of these frameworks. Typ-
ically a service is implemented as a multi-layer application. The lowest layer is responsible
for remote service distribution and inter-service communication. The next layer uses the
configuration service or XML files to configure the behaviour of service. This layer also
integrates message generation and if needed database access. E.g., in the Instrument Tier
the highest layer is responsible for implementing the motion logics that is achieved by
using the corresponding framework. In the Control Tier the highest layer may use the
communication framework to access the hardware. When using these multi-layer services
the remote command is received by the lowest layer, processed in the middle layer (e.g.,
a message is generated or data is written to the database or file) and finally executed in
the highest layer (e.g., a motion sequence is started or a command is send to the elec-
tronics). After the command was processed by the highest layer the results are sent back
through the middle layer1 to the lowest layer where the remote command is finished. The
lowest layer does all error handling regarding remote operations while the middle layer
ensures proper data exchange/logging. Therefore the highest layer can be kept simple and
clear while the basic features of the independent layers can be sourced out into individual
frameworks to enhance reuse and speed up the service development process.

3.3 Service Deployment and Software Start

When developing a multi-service application one of the most important tasks is the service
deployment and monitoring. The LCSP consists of services and applications that can be
started directly in the command shell. In an early phase of the project the individual
services have been started manually in the IDE. With an increasing number of services
a uniform and fast way of starting and stopping the services became indispensable. In
the domain of this thesis a Start Manager application was developed to support service
management on just one machine because a single hardware platform was anticipated.
When running the distributed control software on separate computers a Start Manager
application has to run on each of these machines. The architecture of the service start
application was designed open for extensions. This allows to create a distributed version
of this application by adding a slave version that runs on each of the computers and
connects to a central master. This master can then be used to issue service start and stop
commands on the connected slaves. Although a centralised start process could be achieved
with a command shell script the functionality to individually manage and supervise service
activities demands a user friendly service access and status visualisation.

The LUCIFER Management Console (LMC) combines both, an easy to use and fast
application start/stop option as well as service management functions (see Figure 3.2).

1This may cause new message or database interaction.
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Figure 3.2: The LMC main window that allows to manage, configure and supervise the ser-
vices. The context menu of the configuration server is opened by right clicking on
the service.

The start process of the applications and services can be freely configured. Therefore a
start descriptor needs to be specified for each service.

Four different types of start descriptors exist. A general descriptor to specify the start
configuration of any kind of application/command. This kind of descriptor can addition-
ally be used to call command shell scripts that e.g., clean up a temporary data directory
or dump entries from the database to a file. The RMID start descriptor is needed to start
an activation daemon and its internal registry (compare Section 4.1). To start plain Java



CHAPTER 3. CONTROL SOFTWARE BASICS 42

Figure 3.3: The LMC start screen displaying start progress of applications and services.

applications the Java start descriptor can be used while the start-up procedure of more
specialised services is implemented by the service start descriptor. The basic capabilities
of a start descriptor are passed from the StartDescriptor class to the specialised start
descriptors that are presented in Table 3.1. In this inheritance hierarchy the ServiceStart-
Descriptor class is based on the JavaStartDescriptor class.

After the configurations have been defined the resulting start descriptors can be saved
to an XML file. This configuration file can be edited manually (see Appendix A). The status
of the complete software system is displayed by the LMC. All applications and services that
are marked to automatically start with the system are executed by a single mouse click.
The sequence commands are scheduled according to their priorities. Thereby the LMC
allows parallel execution of commands to speed-up the start-up process. The progress of
the system start is visualised by an animated start screen (see Figure 3.3). After the system
has been started the state of the services is displayed in the LMC. Green buttons represent
running applications and services while red buttons symbolise non-available ones (compare
Figure 3.2). By starting a RMI Activation System Daemon (RMID) as a background
daemon the control software services will stay alive even when the LMC is closed. When the
management console is started it automatically scans for a running registry and analyses
the status of the registered services. This is done to ensure a consistent software state. All
running applications and services are executed in an individual console. These consoles
can be used to directly manipulate the commands by entering command line text that is
processed by the running applications and services. The main difference for services is that
these services just register to the activation daemon and terminate. Then the activation
system takes care of initialising a new virtual machine which hosts the according service
(compare Section 4.1).

Beside a centralised start and stop of applications and services the LMC provides con-
text sensitive access. Services can be restarted, too. The main benefit of the LMC is the
ability to access the parameters of a service (see Figure 3.4). These parameters contain
plain information, e.g., the service name, the host the service is running on, the version
number or the up-time. If the Time Service is used the time drift is displayed. In the
screen shot of Figure 3.4 no time drift is displayed because Time Service and client are
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Class Attribute Scope

StartDescriptor name – name to be displayed in LMC
command – command string that should be

executed
commandArgument – additional command arguments
workingDir – working directory the command

is executed in
autostart – whether or not to include the

command in the start procedure
priority – priority when starting the com-

plete system
usage – usage identification
executionTime – required application start time

ProgramStartDescriptor
RMIDStartDescriptor serviceName – name of the activation sys-

tem daemon used to determine
whether the system is running

JavaStartDescriptor mainClass – main Java class to execute
programArguments – additional program arguments

passed to the executed main class
ServiceStartDescriptor serviceName – name of the service that is used

for the service status display

Table 3.1: Overview of the available LMC start descriptors and their attributes.

running on the same host and therefore no drift can be measured. Next to this basic infor-
mation the command line arguments that have been passed by the activation daemon to
the virtual machine can be inspected. These arguments can only be changed in the service
start descriptor and demand a complete stopping and starting of the service. A grace time
can be specified and a terminate/restart signal can be send to a service by pressing the
corresponding buttons. Then the service will wait for the specified amount of time and
exit thereafter. The main functionality of the service parameter dialogue is to manage
the configurations used by the service. All used configurations are automatically collected
by the configuration management framework (compare Section 4.4). The functionality of
this dialogue is available for every service of the LCSP. This is made possible by inte-
grating these functions into the basic remote communication framework of the project
(see Section 4.1). In case of modifying the configuration of a service the service itself can
determine how to process and save the changed configuration values. This is especially
important when distributed and centralised configuration files co-exist.

3.4 External and Utility Packages

The individual services and frameworks of the LCSP are described in the following chap-
ters. To run these services external software packages are needed. This collection of ex-
ternal packages and programs is fundamental to a successful operation of the LUCIFER
instrument. First of all this collection includes an OS that provides basic functionalities
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Figure 3.4: The LMC service parameter window that allows to view and edit service param-
eters.

like multi-tasking, file/network access and graphical data output. To run the Java ap-
plications and services a Java Runtime Environment (JRE) is needed that includes the
virtual machines, compiler/software development tools, remote service deployment and
debugging facilities. For persistent database storage a database service has to be set up. In
the LUCIFER project a common MySQL database was chosen. This relational database
management system allows data access and modification with SQL statements. To easily
access the data stored in the database a web server is applied. PHP generated web pages
are made available by an Apache 2 web server. The CoolStack software package from SUN
includes all needed programs2 to include web service functionalities in the Solaris 10 OS.

3.4.1 The Hibernate Framework

Hibernate is a persistent storage framework for the Java programming language. It is part
of the JBoss3 enterprise middleware system suite and developed/maintained as a profes-
sional Open Source project with the availability of professional support. In the LUCIFER
project it was mainly used to store the information that represent the instrument status.
Hibernate provides mechanisms to transparently persist OO data structures, including
dependencies like inheritance, association as well as aggregation to a relational database.
Any kind of multiplicities in the dependencies is covered whereas one can specify how
to propagate data changes. Eager and lazy loading as well as cascading or flat saving of
objects is available. To use these multiple storage options this framework needs only an

2MySQL, Apache 2 and PHP 5 are the most prominent services that are included in CoolStack.
3JBoss, Inc. is a department of Red Hat.
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appropriate mapping information of the classes. This mapping information can either be
specified in separate mapping files or as in-line source code annotations. Appendix E con-
tains an example of such a mapping file. Once a mapping between an OO data structure
and its relational database representation has been defined, Hibernate takes care of the
data transformation, object caching and data integrity.

Hibernate has become an industrial standard for medium to large scale software projects
with database access. By using this service a lot of time developing specialised database
access routines could be saved. No explicit SQL commands need to be composed by the de-
veloper. He just needs to concentrate on one simple mapping that may be changed without
any changes to the source code. This allows fast adoption to changing database require-
ments. Even thought this framework seems to be oversized for the LUCIFER project the
usage of the Hibernate framework paid off. The time used to integrate this framework and
to defined the individual class mappings was much less than the estimated time to write
individual SQL data export routines. Moreover one should not forget that a mapping auto-
matically provides object import functionality. This option may be used in further software
releases to implement instrument status replay capabilities to the virtual instrument (see
Chapter 8).

Further information on Hibernate can be found in Bauer and King (2006) and on
the project‘s web page http://www.hibernate.org (2009).

3.4.2 The Message Browser

The storage of program messages is necessary for system status tracking, user notification
as well as error debugging. Therefore the messages are processed by a central service
and stored in a relational MySQL database (compare Section 4.5). Even though a GUI
application exists to read generated messages on the fly this tool is not able to roll back
older messages. For efficient database mining operations a tool which is simple to use is
needed. Therefore the message browser that is presented in Figure 3.5 was developed.
This browser is realised as a PHP web page and allows to specify a message identification
number. This unique number can be included into error reports and reduce the amount of
time needed for the hardware/software engineers to find and solve a problem.

Besides sorting options, fast browsing capabilities are provided. The selection of mes-
sages that are displayed can additionally be influenced by applying filter options. The
easiest way to specify filters is to select one out of five message levels for each of the five
different message types. These message types are: instrument, system, user, error and de-
bug messages. See Section 4.5 for more details on the individual message levels and types.
For a more experienced user SQL Where-statements can be specified. By pressing on the
identifier the selected message becomes the top message on the display. Each message can
be inspected in detail with a separate message overlay. This overlay contains information
that can be used to localise the origin of the message in the source code or the exact
time the message was created. If auxiliary information has been attached to a message
this extra data is displayed in the overlay, too. The presence of such appended data is
indicated by naming the details link as <EXTRA> instead of <show>.

3.4.3 The GEIRS Detector Readout Software

The Generic Infrared Software package is an in-house development of the MPIA in Hei-
delberg and is maintained by Clemens Storz. It has been written as a mix of C /C++
sources without a previous analysis and design phase. Together with the first readout
electronics that has been developed to control IR detectors this software emerged. Today
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Figure 3.5: The Message Database Browser. A PHP based web browser tool to display, search
and sort the contents of the message database.

GEIRS is used to control almost all infrared instruments built at the MPIA. This includes
the IR instrumentation at Calar Alto Observatory (CAHA). To access the IR arrays the
software sends commands to the control electronics via a serial RS232 connection. These
commands are used to define basic parameters like the integration time or the number of
integrations as well as more complex parameters that specify the readout mode, sub-frames
or electronical pattern generation that is needed to clock the array. Because the electron-
ics is modularised and free configurable it can be adopted to different detector types and
match the individual requirements. After an integration the detector content is amplified,
digitised and sent back to the control computer via a high-speed fibre connection. The
readout software converts the received data together with the instrument configuration
into a FITS-file and optionally saves it on disk. More detailed information on GEIRS can
be found e.g., in the technical report of the MIDI instrument (see Storz, 2001).

For historical reasons the detector readout is tightly coupled by GEIRS with the instru-
ment control. This complicates a stand-alone operation. In the LUCIFER project GEIRS
is just used for the detector access. The lack of separation of concerns complicates the
creation of the FITS header information. GEIRS was intended to write parameters like
instrument temperatures and filter wheel positions directly. This is the reason for similar
keyword entries in the FITS header. More details on the FITS-header creation can be
found in Knierim (2009).

Besides the basic functionality to control the detector the GEIRS software provides a
GUI to inspect the results of an integration. Either this GUI or a command line language
can be used for user interaction. The GEIRS package was embedded into the LCSP by a
socket connection. Therefore the command server accepts incoming commands from other
remote services. These remote commands correspond to those commands that can locally
be entered in the command line.

A first functional version to communicate with the GEIRS command server and inte-
grate the detector interaction in the LCSP was developed in the diploma thesis Muhlack
(2006). More details on the available and used commands of the command server can
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Figure 3.6: Subsystems of the Telescope Control Software (distilled from Axelrod, 2005).
RED: Command Exchange Channel, GREEN: PSF Control Channel, BLUE: Pointing
Control Channel, MAGENTA: Instrument Control Channel.

be found there. The Readout Service that embeds the GEIRS package is based on previ-
ous work that had been done in an early phase of this thesis. A test readout electronics
equipped with simulators instead of AD-Cs was brought into service. This setup needs
no cryogenic cooled detector array. This was necessary to run first tests with the GEIRS
to define the requirements4 in more detail and develop a first software integration plan
(compare Section 3.1).

3.4.4 The Telescope Control Software

The LBT is controlled by a framework of subsystems called Telescope Control Software
(TCS). These subsystems are presented in Figure 3.6. To separate the communication
channels and improve performance four independent data paths are used. For instrument
interaction the instrument control channel is used. Via this channel the Instrument Inter-
faces (IIFs) communicate with the Command Sequencer (CSQ). Depending on the actions
of the instruments the CSQ generates the appropriate commands and notifies the subsys-
tems that are responsible for pointing and optical alignment. The command exchange
channel ensures this fundamental communication between all subsystems. It connects the
independent and separated subsystems of both mirrors with the overall telescope control
services. The pointing of each mirror is supervised by the Point Spread Function Opti-
misers (PSFOs) that has access to the PSFO control channel. Adaptive Optics System
(AOS), Optics Support Structure Control System (OSS), Primary Mirror Control Sys-
tem (PMC) and Guiding Control System (GCS) need to work together in a coordinated
way to ensure stable optical setups. To control the pointing of the telescope the Pointing
Control System (PCS) communicates via the pointing control channel. In addition to the
GCSs, PMCs, OSSs and IRCs of the individual mirrors the Enclosure Rotation Control
(ERC) to move the enclosure and the Mounting Control System (MCS) to move the tele-
scope are needed to point, track and guide to selected coordinates. In Terrett (2006)
the complexity of pointing a binocular telescope is described. The Enclosure Control Sys-
tem (ECS) is an independent subsystem that controls the enclosure and allows to move
the shutters and regulate the lights as well as to control environmental elements like air-
conditioning and roof heating. More details on the TCS and its subsystems are presented
in Axelrod (2005). For the realisation of the TCS the C /C++ programming language
and Remote Procedure Calls (RPCs) based inter-subsystem communications have been

4[F1] was one of the few predefined requirements.
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used. Even though this approach is old-fashioned it has been heavily recommended to the
external instrument software teams.

As a fundamental weak spot of the TCS design the instruments have to take over
control of the telescope. This kind of command structure complicates the allocation of
responsibilities. Currently instruments can not issue commands to adjust optical compo-
nents directly and don’t get direct feedback on running operations while their topmost
position in the command hierarchy would demand this. Two independent instruments are
anticipated for the two mirrors but the design does not allow binocular instrumentation
to use both mirrors concurrently.

The first instruments that used the TCS were the LBCs. The requirements of wide field
cameras differ from NIR cameras. To run a prime focus instrument only the main mirror
needs to be adjusted and the wide FOV reduces the demands for pointing and tracking
precision. With the installation of the IR test camera in one of the bent Gregorian focal
stations the primary, secondary and tertiary mirrors must work together to produce a
proper optical beam. The optical setup as well as the new demands of increased telescope
interactions lead to IIF functionality enhancements. Even though the IIF should be used
as an interface to the TCS no real system independent access is granted. A complete
instance of the control software source is mandatory to access the CSQ. This means that
any changes to the software force a recompilation of the accessing instrument software.

The control software of the IR test camera was written in C++ by José Borelli. By
implementing an ICE interface a middleware solution to independently access the TCS
was created. See Borelli (2008) for detailed information on the commands supported by
the IR test camera interface. This simple to use interface is included in the LCSP to allow
telescope interactions instead of accessing the CSQ directly. For this reason the Telescope
Service of the LCSP communicates via an ICE interface with the IIF that sends requests to
the CSQ. This cumbersome way of instrument-telescope interaction needs to be simplified
in the future by implementing a direct interface in the TCS.

3.4.5 The JavaDoc Extension Package

Even though this package is not fundamental for the execution of the control software
it is important to improve the API documentation. Besides a good architecture and de-
sign, a good documentation reduces the time for software improvements as well as failure
localisation and therefore increases the efficiency and reliability of the control software.

After defining the basic coding style specifications the software documentation con-
ventions have been fixed (compare Chapter 2 and Appendix D). Therefore additional
Taglets have been implemented. A Taglet is an extension to the JavaDoc tool that allows
annotation tag evaluation. All project dependent JavaDoc extensions inherit the basic an-
notation processing capabilities from the BaseTaglet class. This class is based upon the
com.sun.tools.doclets.Taglet class of SUN. The newly created Taglets are presented in
Table 3.2.

With the exception of the ExampleTaglet class all Taglets are realised in one class. To
permit syntax highlighting of the examples the source code needs to be parsed and split into
tokens that can be represented in HTML. A first implementation of syntax highlighting
was taken from the web. But it was found insufficient for the example presentation because
of the missing separation between the individual Java keywords. Therefore the classes used
to format Java source code have been re-design and created together with the other Taglets
in this thesis.
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Annotation Class Scope

@changes ChangesTaglet – logging of change history
@testcase JUnitTaglet – dynamic linking of JUnit test cases
@todo ToDoTaglet – recording of unsolved tasks
@example ExampleTaglet – including of source code examples

JavaToHtmlWriter – syntax highlighting
JavaFormatter – tokeniser and parser
JavaFormatterResult – result of parsing

Table 3.2: Overview of the JavaDoc Taglet extensions.

3.5 The Metrics of the LCSP

In computer science metrics is used to quantitatively evaluate source code in order to dis-
cuss software packages and to monitor code quality. One benefit of metrics is that it can be
collected automatically. The tools that have been used to generate the metrics of the LCSP
are described in Section 2.3. A quantitative inspection of software allows a comparison of
software projects, identification of possible weaknesses in design or implementation and an
estimation of complexity and costs. The size of a project is somehow correlated with the
efforts to create it. E.g., Red Hat Linux 7.1 consists of 30 million lines of source code and
was estimated to cost roughly 1 billion US$ if it would have been built in a conventional
development process (compare http://www.dwheeler.com/sloc/, 2001).

3.5.1 Definition of Metrics

Besides the size of the source code more important metrics exists. In the following subsec-
tions the metrics that has been collected for the LCSP is specified.

Lines of Code

Even though the lines of code (LOC) are one of the less significant metrics they are most
often used to quantitatively describe a software project. These LOC represent the amount
of source code lines that are not empty. Since this measure is directly connected to the
skills and formatting preferences of the software developer it can only be used to determine
the order of magnitude of a project. The Listings 3.1, 3.2 and 3.3 are a simple example
how the same result can be produced by 1, 3 or 5 lines of code. The first example shows
how inappropriate structuring can lead to many source lines while the size differences of
the latter examples result in different formatting. On one hand the occurrence of many
copy-and-paste sources result in a higher LOC measure while the maintainability of the
code is reduced. One the other hand highly compact and efficient code that needed a lot
of development time can be covered with only a few lines of code.

To overcome these disadvantages several other LOC definitions have been introduced.
In addition to simply count all non-empty lines the physical lines of code (PLOC) and
logical lines of code (LLOC) measures have been defined. The PLOC reflects all lines
that physically contain program source. Any kind of documentation and comments are
ignored in the calculation of PLOC. The LLOC is the amount of logical instructions in the
sources. To calculate the LLOC is more difficult because a logical analysis of the source
is needed. A simple way to create this measure in Java is to count the number of “;” that
are used to terminate an instruction. For OO programming languages the method lines of
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Listing 3.1: LinesOfCodeExample1.java (Java Source File)

1 System.out.println( " R o w  0 " );

2 System.out.println( " R o w  1 " );

3 System.out.println( " R o w  2 " );

4 System.out.println( " R o w  3 " );

5 System.out.println( " R o w  4 " );

Listing 3.2: LinesOfCodeExample2.java (Java Source File)

1 for ( int i=0; i< 5; i++) {

2 System.out.println( " R o w  " + i);

3 }

Listing 3.3: LinesOfCodeExample3.java (Java Source File)

1 for ( int i=0; i< 5; i++) System.out.println( " R o w  " + i);

code (MLOC) is important. This measure counts the source lines that are embedded in
methods and therefore represents the executing part of the software and ignores declarative
expressions. A high number of source code lines in a specific method directly indicates a
structural problem and the need for refactoring.

In January 2010 the LCSP consisted of 1,661 files containing ≈ 293 k lines in total.
≈ 269 k of these lines are not empty and contain java sources, Hibernate mapping in-
formation or internationalisation properties. Configuration files have been excluded from
these measurements. The PLOC of the software package is ≈ 137 k lines while the LLOC
is ≈ 98 k lines. The average cost for one logical lines of code is ≈ 10e based on the 22
man-years5 of work needed to create the software. Compared to the costs of Red Hat Linux
7.1 this is one third.

Comment Ratio

The comment ratio (CR) measures the ratio between PLOC and the lines containing
comments. These lines can either be the JavaDoc annotations or comments embedded in
the source code. Empty comment line are omitted from the calculation. The CR is used to
test an appropriate source documentation. A value of 0.0 is found in undocumented source
files while 1.0 represents an equal amount of comment and source lines. Higher values
denote more comment than source lines. As for other quantitative ratings the quality of
the comments is not considered and hence the CR only represents the order of magnitude
of source documentation. Another disadvantage of this metric is that software developers
tend to comment out source line of former versions or lines that contain debug code. Even
though this code is no longer used it is not deleted and therefore distorts the calculation
of the CR.

The CR for the individual files of the LCSP was accumulated together with the LOC
and PLOC by a tool that was developed as part of this thesis. The CR that was previously
calculated with the Together IDE was based on the LOC and the summation of comment
lines did not exclude empty comments. Thereby the ratio for files with numerous comments
was undervalued. A comparison of the PLOC measurements done with the Metrics plug-in
and of those done with the especially developed tool showed no difference.

5Assuming a man-year of work costs ≈ 50, 000e



51 3.5. METRICS

Number Metrics

Other metrics counts the amount of structuring elements of the same type. In OO pro-
gramming languages these are in the first instance the number of classes (NOC) and the
number of interfaces (NOI). These measurements are used to estimate the size and assess
the design of a software package. When the number of abstract classes and interfaces is
compared with the cumulative number of classes the abstractness of a package can be
calculated. This measure reflects whether a package was designed to be abstract or pre-
cised. Abstract packages are intended to provide generic solutions that can be specified,
concretised and extended by other packages while precised packages solve a concrete task.
The number of methods (NOM) and number of attributes (NOA) metrics reflect the inner
structure of programming elements. Too large numbers are often a sign of inadequate de-
sign. For the number of parameters of a method this applies accordingly. In case of too
many parameters that are passed to a method these parameters should be grouped and
encapsulated inside classes. The NOC and NOM metrics that are presented in Table 3.3,
3.4, 3.5 and 3.6 are added up for programs/frameworks that consist of several software
packages.

Dependency Factors

Coupling factors are used in computer science to measure the concatenation of software
packages. Thereby it is important to distinguish between afferent coupling (CA) and ef-
ferent coupling (CE) metrics. The CA measures the amount of external assignments to
classes within a package. This measure reflects how often a package is used from external
and therefore points out its relevance for the software product. Contrary to the CA the
CE represents the dependency on other software packages. The total coupling of a package
is calculated as the sum of CA and CE. In Table 3.3, 3.4, 3.5 and 3.6 the maximum CA
and CA values are stated for composed programs/frameworks.

The capability of packages to resist external changes is expressed by the ratio between
the CE and the total coupling. This metric is called instability. A value of 0 indicates a
package with no external connections that is completely stable to external changes. A value
of 1 represents an instable solution. In one of the diagnostic diagrams of computer science
the instability is plotted versus the abstractness. Due to the anticipated application the
instability should be near 0 for an abstract package and near 1 for a concrete solution.
The correlation between instability and abstractness forms an ideal line between these
both extreme examples and is called Main Sequence (see Martin, 1994). The Euclidean
distance of a package from this Main Sequence reflects the variance in balance between
abstractness and instability.

Besides the coupling factors that quantitatively describe the inter-package dependen-
cies cyclic dependencies between packages have to be minimised. Otherwise changes to a
package could lead to unpredictable influences on the other cyclically connected elements.
This would reduce the maintainability of the source code enormously.

3.5.2 Tier Metrics

Basic metrics of the different software tiers of the LCSP (compare Section 3.2) is presented
in Table 3.3, 3.4, 3.5 and 3.6. The total sum of analysed PLOCs is ≈ 21 k lines lower than
the number of all physical source lines. This difference results in automatically generated
source code and used third-party software packages that have been excluded from the
analysis.
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MLOCProgram/Framework PLOC CR
avg max

NOC NOM CA CE

Configuration/XML-Lizer∗ 1,672 1.44 11.4 64 12 97 194 14
Database Access∗ 590 1.27 10.6 71 7 36 10 6
Message Creation∗ 1,505 1.57 9.8 75 21 110 210 21
Remote Architecture∗ 1,489 1.58 7.9 56 24 129 205 19
Taglets∗ 507 1.08 8.3 54 9 35 0 6
Time Service∗ 440 1.38 8.1 65 9 29 46 11
Utilities1/R7S∗/I18N∗ 1,108 2.21 7.3 30 14 62 373 8

Table 3.3: Metrics of the System Tier.
∗ 100% developed in the context of this thesis, 1 more than 50%.

Although the System Tier consists of merely 7 k lines it is the base of the whole LCSP
(see Chapter 4). The metrics of the System Tier visualises the importance of the System
Tier (compare Table 3.3). The high CA values indicate a strong usage of these packages.
The 1.5 k lines of the remote architecture package provide all functionalities to create
automatically activatable remote services together with their clients. Every service was
created by using a template service and applying simple modifications to its source code.
Therefore ≈ 300 PLOCs need to be subtracted from every service. E.g., the Time Service
that was used as an prototype of a first service was realised in only ≈ 150 PLOCs by
adding methods to exchange time information.

The Control Tier is responsible for the interaction with the electronics and the log-
ging of the instrument state. The diversity of the accessed electronics and their different
command interfaces lead to a large PLOC value of ≈ 25 k lines. Only the temperature con-
troller and monitor use the same command interface language. Therefore the temperature
controller was built as a copy of the Temperature Monitor Service. Their similarities are
reflected by the metrics (compare Table 3.4).

MLOCProgram/Framework PLOC CR
avg max

NOC NOM CA CE

Journalizer1 1,069 1.20 10.3 66 12 65 41 13
Calibration Unit∗ 786 1.39 11.0 58 8 45 12 10
RS232 Communication∗ 852 1.69 7.5 37 14 66 24 16
Electronics/MCU2 5,887 1.51 10.1 81 69 409 238 15
HIRAMO3 1,568 1.53 10.9 64 11 81 61 11
LuciferVR∗ 3,679 1.43 9.2 117 39 315 19 19
Pressure Monitor3 1,312 1.51 10.0 71 11 90 11 11
Rack Cooling Control Unit3 1,586 1.38 10.0 80 12 99 8 11
Readout Service4 1,936 1.06 9.1 85 11 146 8 10
Switch Box Service∗ 1,252 1.41 10.5 126 11 78 145 10
Telescope Service5 1,997 1.01 6.2 98 18 216 20 13
Temperature Control3 1,155 1.49 10.5 71 8 72 9 10
Temperature Monitor∗ 1,205 1.36 10.5 71 10 76 12 11
Turbo Pump Monitor3 885 1.33 10.3 71 10 55 3 11

Table 3.4: Metrics of the Control Tier.
∗ 100% developed in the context of this thesis, 1 more than 75%. 2: developed in coop-

eration with Andreas Zeh and 100% reviewed and redesigned. 3 by Volker Knierim.
4 by Tobias Muhlack and Volker Knierim. 5 by Marcus Jütte.



53 3.5. METRICS

MLOCProgram/Framework PLOC CR
avg max

NOC NOM CA CE

Camera Unit1 871 1.25 8.7 43 14 61 14 15
Compensation Mirror1 2,242 1.14 9.6 141 16 176 13 16
Detector Unit1 1,391 1.17 8.9 97 13 111 12 14
Filter Unit1 1,544 1.11 9.2 79 15 116 21 16
Grating Unit1 2,298 1.16 8.9 112 28 173 24 27
Instrument Framework∗ 584 1.23 7.1 28 7 47 92 4
MOS Unit∗ 7,964 1.19 8.2 144 138 337 154 12
Pupil Viewer Unit1 701 1.13 9.1 42 12 49 11 13
Sequencing Framework∗ 2,922 1.49 5.7 89 70 295 195 58

Table 3.5: Metrics of the Instrument Tier.
∗ developed in the context of this thesis. 1 by Volker Knierim.

MLOCProgram/Framework PLOC CR
avg max

NOC NOM CA CE

Start Manager1 4,120 1.15 8.2 108 47 321 13 17
Pluggable Engineer GUI∗ 1,534 0.84 11.8 90 12 76 0 7
LuciferVR GUI∗ 1,776 0.55 15.9 146 9 78 0 8
Messaging GUI Client∗ 1,242 0.92 13.2 90 12 52 3 13
Sequencing GUI∗ 1,522 1.03 10.0 90 13 69 7 13
MOS GUI Client∗ 1,283 0.82 12.5 128 4 36 1 4
MCU GUI Client∗ 2,333 1.12 9.8 73 22 97 5 21
Switch Box GUI Client∗ 1,602 0.84 11.9 82 10 53 2 10
10 Other Engineer GUIs2 10,536 0.72 10.2 167 59 691 3 13
Readout Service2 835 1.22 7.3 75 7 71 8 6
. . . GUIs2 958 0.15 8.3 85 7 78 0 6
Supervisor2 1,202 1.06 10.2 94 7 75 4 7
. . . GUIs2 402 0.71 7.8 30 3 31 0 3
Scripting2 2,147 0.41 8.9 160 24 171 5 10
Instrument Manager3 2,397 0.69 8.1 74 29 204 30 14
. . . GUIs3 3,004 0.41 8.8 790 26 244 8 19
Telescope Service3 199 1.18 3.8 18 4 23 4 5
. . . GUIs3 3,044 0.14 16.6 1277 12 139 1 8
Acquisition3 465 0.69 10.6 36 5 32 4 3
Instrument Data Structure4 2,854 1.07 3.3 52 43 451 149 6
Astronomical Functions4 611 0.03 6.2 30 4 67 7 4
Observation Templates4 580 0.10 24.2 84 6 19 1 5
OPT4 17,982 0.24 14.2 158 135 920 14 82

Table 3.6: Metrics of the Operation Tier.
∗ 100% developed in the context of this thesis, 1 more than 50%. 2 by Volker Knierim.
3 by Marcus Jütte. 4 by Jan Schimmelmann.

The most important services that physically control the mechanical parts of the in-
strument are the Motion Control Unit (MCU), the switch box and the HIRAMO Service.
These services have the highest CAs because they are widely used in the Instrument Tier
and have sophisticated GUIs in the Operation Tier. Both, the Journalizer that loggs the
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instrument state and the framework that communicates with the electronics via a serial
connection present high CA values.

In the Instrument Tier all elemental logics to move the opto-mechanical parts are
covered by ≈ 20 k PLOCs. All services of this tier depend upon the sequencing framework
and the generic Instrument Service. Therefore both frameworks have high CA values. The
sequencing framework additionally shows a high CE value because of its requirement to
provide an interface to the control electronics. The most complex service of the Instrument
Tier is the service used to control the MOS Unit. Its size and complexity originates in
the construction of the MOS Unit and its task to transport freely movable masks from a
storage to the focal plane of the instrument. This exchange is realised for any orientation
of the instrument by compensating and correcting unavoidable mechanical bending and
stepper motion errors.

The Operation Tier is responsible for operating the instrument. Central services that
combine the functionalities of lower tiers provide all functionalities to perform observations
with the LUCIFER instrument. Beside these services many GUIs that grant engineering
access to the services of the lower tiers and GUIs to prepare and perform observations
have been developed. GUI applications easily reach large PLOCs with typically low CRs
especially when created with automated GUI builders. The creative effort to build a GUI
is negligible compared with the work to develop the functionalities of a service.

In the Operation Tier of the LCSP ≈ 49 k lines of the ≈ 63 k PLOCs are used for
GUI applications. Most of these GUI applications are only utilised for engineering tasks.
The remaining lines provide the capability to perform observations and coordinate the
instrument, the detector and the telescope. As expected for the highest tier all applications
should have lower CA than CE values because functionalities are only centralised without
the need of propagation (see Table 3.6).

Theoretically the instrument could be used with the engineering applications only, but
for a more convenient operation this is not anticipated. The elements that are fundamental
for the execution of the LCSP are reflected by their high CA values (compare Table 3.3,
3.4, 3.5 and 3.6). Most of these significant programs/frameworks have been developed in
the context of this thesis.
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The System Tier

T
he System Tier contains all basic frame-
works and services to run the LCSP. As
a fundamental factor of a robust and

high-performance distributed system the inter-
service communication framework is presented.
Resource management, internationalisation and

time synchronisation are part of this tier. The
persistent storage of data used either for sys-
tem configuration or logging is introduced. Fi-
nally the messaging framework and its service is
described.

In Section 3.5 the metrics of the System Tier exhibit very high CA values. This can be used
as an indicator of the importance of the embedded services and frameworks. The System
Tier ensures a stable and fast running distributed system and provides basic functions to
the services and applications. In a distributed environment it is important to unify the dis-
tribution mechanism of the functionalities and the service creation process. This includes
a centralised storage of data and service configurations to increase the maintainability.
Time synchronisation is needed when a distributed system spreads across multiple hard-
ware instances. To track the state of the software system and to create human readable
information conveniently a distributed messaging system is mandatory.

4.1 The Remote Service Framework

All distributed services and applications of the LCSP are based on the remote service
framework. This framework automatically integrates the time synchronisation, configura-
tion management and message exchange into every service of the LCSP. Besides integrating
project specific functionalities the framework implies all necessary skeletons to create ser-
vices and their corresponding clients. The implementation of the remote service framework
is based on the Remote Method Invocation (RMI) capabilities of Java.

4.1.1 Remote Method Invocation

RMI is comparable to RPC as remote methods/procedures are transparently called via a
networking connection. As other programming languages Java allows for sequential pro-
cessing of data. Such a sequence is called a stream. It can either be used to send/receive
data to/from a file, a terminal or another program. To be able to do this with OO data
structures all the objects must specify their mode of data serialisation and de-serialisation.
In the simplest way this is done by implementing the empty java.io.Serializable interface.
This denotes an object to be automatically serialised in which all transient attributes are
omitted. For complex data structures the object serialisation and de-serialisation can be
specified by implementing the .writeObject(out) and .readObject(in) methods. To prevent
different versions of serialisation from compromising the data integrity the use of the se-

rialVersionUID attribute is recommended for versioning. This attribute allows to label an
implementation. In distributed OO applications the transport of objects instead of primi-

55
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tive types is essential. The mechanisms of streaming the data structures is the basis of the
inter-service communication.

Sockets provide an interface for network communications. A socket communication con-
nects to processes across an IP network and allows data exchange. These communications
are not necessarily limited to inter-computer data exchange. They are commonly used to
communicated between applications/processes that run on one and the same computer.
On top of the network layer that ensures the data transportation simple data streams
are used to realise the bidirectional communication. The IP address of a host together
with a port number is used to specify a socket. For many applications string messages are
used for the client-server communication. This demands a specification of commands and
data exchange formats. Such a string based socket connection is used to interact with the
GEIRS server (compare Section 3.4.3). A benefit of this communication paradigm is that
the applied programming language and its data type conventions are of no importance to
both the server and its clients. This leads directly to the disadvantage of this approach.
The data parsing and conversion must be done by the developer. Middleware solutions
like CORBA or ICE have been built to minimise this work. These solutions introduce a
programming platform independent interface definition language. Once the interfaces are
specified all data and type conversions are done and the required source code is generated
automatically by the middleware.

As RMI is used to connect two Java applications no data unification/transforma-
tion is needed. The hardware platform independence of Java already requires an internal
data transformation. E.g., the endianness or word size of a computer architecture must
not be considered when writing an application. Therefore the JRE intrinsically ensures
a uniform data representation and no data mapping between the applications needs to
be specified. The data is exchanged on the basis of the underlying object serialisation
and de-serialisation capabilities of Java. Together with the data the method calls must
be transported over the socket connection. This means that both the method calls and
their responses must be wrapped into a byte stream. The marshalling and de-marshalling
of data, the handling of the socket connection by threads and the remote execution of
method calls is transparently done by RMI. The only difference between a remote and a
local method call is the required handling of possible exceptions caused by the network
transportation. To make a method callable from remote an object needs to implement
an interface that extends java.rmi.Remote. This interface is used to specify the available
remote callable methods. To allow handling of errors that arise from the socket com-
munication all remote methods must throw a java.rmi.RemoteException. This increases
accordingly the fault tolerance of an application.

On each side of the socket communication a proxy is used to connect the data stream
with the virtual machine of Java. On the client side this proxy is called stub. This stub
acts like an object that is part of the application nonetheless the actual instance is on
the remote side. Therefore the parameters are marshalled before the method call and
the return value is de-marshalled after it. On the server side a skeleton grants access to
the remote instance. Incoming method calls are passed together with the de-marshalled
parameters to the instance of the remote object and the return value is sent back to
the client application. Since RMI does not guarantee that each method call is handled
by one and the same thread it is important that the remote method implementation is
thread safe. In the current version of Java the creation of skeleton files is not mandatory
however each stub demands a corresponding class file. These classes are created by the
RMI compiler. In the LUCIFER project the stub creation was integrated in the build
process (see Appendix C).
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As a final step of creating a RMI connection between two applications a remote object
must be exported. This includes the creation of the remote object as well as the skeleton
on the server side proxy. For remote access the created instance is connected to a network
socket. To establish a connection the client implementation uses a remote reference realised
by a stub. However this reference requires the address information of the socket. To manage
the remote references centrally and distribute the address information Java provides a
registry service. Remote objects are bound to the registry with a unique identifier. This
allows clients to query for a specific object. The security policy of Java prevents remote
objects from being registered at remote computers. For that reason at least one registry is
required on every computer that should host remote objects. On the client side the remote
object look-up mechanism demands the specification of the remote host. Once a remote
reference is acquired a direct communication between the remote object and the client
application is established. Besides the simple export of a remote object Java supports a
dynamic creation and registration. To create remote objects on demand the activation
system daemon can be used. This daemon is capable of creating new virtual machines
with remote objects. To support this activation the implementation of a remote interface
has to extend the abstract java.rmi.activation.Activatable class. Once an activatable
object has been bound to the registry service incoming look-up calls are passed to the
activation system. This system returns the remote reference to already existing instances
while the non-existing are spawned. This automatic and on demand creation of remote
objects increases the stability of the system. E.g., an unintentionally ended instance of a
virtual machine is recreated and does not affect the execution of the depending clients.

More information concerning RMI especially on distributed threading, distributed
garbage collection and the activation system can be found in Grosso (2002).

4.1.2 The Remote Interfaces

As the design of the LCSP demands a distributed service architecture (compare Section 3.2)
a framework to create remote services was developed. The class diagram in Figure 4.1
presents the core classes of this framework. Besides these classes other classes exist that
are used e.g., to store the address or to configure the networking behaviour of a remote
service. The upper part of the class diagram contains all classes and interfaces that are
required to realise the server side of a service while the lower part represents the client side.
The server side is divided into the remote interfaces, their implementations and a server
skeleton. The remote interfaces specify the remote capabilities of a service. To hierarchi-
cally group the remote capabilities in dependence of the kind of service an inheritance
structure was chosen. The root of this structure is the RemoteObject interface. This
interface defines rudimentary methods to test whether a service is alive and to retrieve
its address, name and its designated use. The RemoteObject interface is extended by
the RemoteService interface to add functionalities for querying the up-time and Time
Service connection information. Methods to exchange the configuration set of a service
are added, too. The ActivatableRemoteService interface is the last element of the inheri-
tance hierarchy. This interface adds methods to stop or suspend a service. This is necessary
to ensure that automatically activated services can be stopped at all. Otherwise the ac-
tivation system would restart them. Even though these remote interfaces define remote
methods that throw a java.rmi.RemoteException none of these interfaces directly extends
the java.rmi.Remote interface. The java.rmi.Remote interface is implemented directly by
the remote implementations. This allows to use these interfaces more generally.
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4.1.3 The Remote Object Implementations

The counterpart of the interfaces are the implementations of the remote functionalities.
These implementations use the same inheritance hierarchy as the interfaces do. The ab-
stract RemoteObjectImpl class realises the basic remote methods while the abstract Re-
moteServiceImpl class implements native access to the configuration sets and to the Time
Service connection status. More important for the RemoteServiceImpl are the implemen-
tations of the Unreferenced and Terminatable interfaces. The Unreferenced interface is
used to signalise to the registry service that its remote garbage collector can notify an
unreferenced remote object. Concretised services that extend the abstract RemoteServi-
ceImpl can override the corresponding method. The Terminatable interface is introduced
to the remote service framework to enable a controlled service shutdown. The RemoteSer-
viceImpl class is implemented in that way that an ending JRE will call the terminating
method and allow overriding classes to handle the shutdown. For each RemoteServiceImpl
object that implements the RegisteredService interface a RegistryObservationThread is
created. This thread ensures that a service is ended as soon as the registered remote
reference differs from the observed remote object. This is necessary to terminate remote
services that are no longer accessible through the registry service and therefore can no
longer be discovered by clients. Otherwise a service repeatedly registered with the same
identifier would lead to only one reachable instance and thus waste resources. Finally the
abstract ActivatableRemoteServiceImpl class provides the functionalities defined for an
activatable remote service. This includes the usage of a SuspendThread to suspend an
activated remote service after a specified grace time. The abstract implementations of the
remote interfaces embed several project specific functionalities. These functionalities can
be accessed e.g., by the user through the LMC.

4.1.4 The Server Skeletons

The missing element to create a remote service is a server skeleton that creates a remote
object and binds it to the registry service or to the activation system daemon, respectively.
The simplest way to realise a remote service is to create a remote object within a JRE and
bind it to the registry. When the JRE ends the remote instance is no longer usable while
the remote reference is still bound. Therefore the RemoteServiceImpl class ensures an
automatic de-registering in case of a terminated service. The Server class provides basic
functionalities to start such a local service. To access the implementation of a remote
object the Server class uses a client implementation reference. This client implementation
can also be used to get the address of the remote service. The skeleton that is realised by
the Server class implements methods to bind, unbind and check the status of a remote
instance. However the most import part of the Server class is the static .initialize() method.
This method ensures that all project specific program arguments are processed and the
corresponding clients are set up correctly. This configuration passing is mandatory to
specify basic service parameters at service start. To realise a uniform configuration of
all services a Hashtable is used that maps predefined keys to the configuration values.
The fundamental keys are defined in the ServerProperties interface and are extended in
inherited definitions of the concrete service realisations. Other static methods allow to
bind and unbind a service, to check whether a service is still bound and running and to
wait until a server is stopped. Those static methods that use a Server object rely on the
abstract methods that grant access to the identifiers of a server. These methods must be
implemented by the concrete services to exchange the service identification parameters
with the skeleton.
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As an extension of the Server class the ActivatableServer provides a skeleton to create
an on-demand activated service. To allow the activation system to create a JRE that hosts
the on-demand activated service several parameters need to be specified. These parameters
are represented by the ActivationInformation class. In addition to some basic parameters
like the server class name to execute, the code base, the JRE or the JRE arguments, the
program arguments Hashtable is stored. Each descendant of an ActivatableRemoteSer-
viceImpl class gets an instance of these program arguments that can be passed to the
.initialize() method of the Server class. Therefore each activated service is started with
the same program arguments as the server once was started with. The Hashtable itself is
created from the command line arguments that have been parsed during the start process.
The parsing of the fundamental keys is done in a method that is overridden by the concre-
tised server implementations. These implementations define new keys and parse them. A
short list of the available program arguments can be found in Appendix B. In comparison
to services that have been started locally an activatable service is registered at the activa-
tion system daemon. Since this daemon has its own registry this registry is used to look-up
the remote references. As activated services are started automatically by the activation
daemon they can no longer be stopped by just ending the server application. Therefore the
server application must be started to utilise the service client reference to send a suspend
or stop command to the corresponding remote instance. As the ActivatableServer is only
required to create a remote service that is managed by the activation system daemon it
can be stopped after the binding processes have been finished.

Another challenge of a distributed system whose services are created automatically
and on-demand is to obtain debugging access. Since the ActivatableServer extends the
Server class all activatable services can be started as a local version. Then the debugger of
the applied IDE can directly access the running service and trace external remote method
calls of client applications. This simplifies enormously the inherently complex debugging
of a distributed application.

4.1.5 The Remote Service Client Architecture

To use the remote methods of the services corresponding clients must be implemented.
The lower part of Figure 4.1 represents the client side and is symmetrically designed to
the server side. As well as on the server side a hierarchical interface structure is used to
group client functionalities. The RemoteObjectClient, RemoteServiceClient and Acti-
vatableRemoteServiceClient interfaces define the access to the functionalities that are
specified in the RemoteObject, RemoteServer and ActivatableRemoteService inter-
faces, respectively. The most important difference between these structures is the root
of the client interface hierarchy. The Client interface defines rudimentary methods to han-
dle remote references. This includes accessing the service identification parameters as well
as the registry address.

As on the server side the implementation of the client interfaces is a transfer of the
interface structure. Just as the Client interface defines basic client functionalities the Cli-
entImpl class implements all necessary methods to create a client. Therefore the reference
to the accessed remote object is stored together with the demanded service identification
parameters that are used to look-up the service in the registry. The stored remote refer-
ence is casted transparently by the extending classes into the required type. The internal
storage and buffering of the remote reference in the client minimises calls to the registry
and to the activation system of the applied underlying RMI system. Each extending client
implementation ensures a direct connection to the remote object.
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The command line client skeleton (see Figure 4.1) can be used as a basis for developing
a simple client that provides service access through the command line. For all basic ser-
vices of the System Tier such a client was developed. The CommandLineClient class and
its descendants implement the parsing of command strings for the corresponding client
functionalities in the hierarchy. First it was planned to include the command line client
functionalities in every service client to grant fundamental access. This approach was given
up in favour of a GUI. To implement this feature in future software releases the inheri-
tance hierarchy must be modified slightly in such a way that the CommandLineClient
class extends the client implementation of an activatable service. Additionally all concrete
service client implementations must be changed to extend the command line client instead
of the basic client and override the .executeCommand(Client, String) method.

The implementations on the client side of the remote service framework ensure that
all extending clients offer the project specific functionalities. Therefore the client of a
specific service just needs to implement access to its particular methods. All clients to
remote services of the LCSP have been developed with the specification to have a static
method to retrieve a client instance. This centralised client creation and management
enables the software to load the configuration data demanded by each client. In each
client implementation the pre-conditions to use the reference accordingly are guaranteed
transparently. Thus an application that utilises a client can simply call its methods without
the necessity to run an initialisation prior to the remote service access.

Another demand of the client implementation is to include messages into the client
method calls. Besides those messages that are created on the service side these messages
are needed to find errors in a client application (see Section 4.5). In the end all client
implementations just bundle the remote reference management with the wrapped method
calls to a uniform and compact service gateway.

4.2 The Time Synchronisation Service

Since the LCSP was designed as a distributed system the applications can be spread
across different computers. This directly leads to the problem that the computers may
have different system times. A synchronous time is important for the messaging system.
To synchronise the time used by the services the Time Service was developed. The Time
Service itself adds only one method to the service implementation of the remote service
framework. This method returns the time of the system the service is running on.

For the Time Service two client implementations exist. One to directly access the
service in order to suspend or stop it and another to provide synchronous time creation
capabilities to an application. As the service only returns its plain system time the latter
one implements all logics to calculate a time correction term. This correction term is then
used to create synchronised system times on the client side.

Several solutions to synchronise computer clocks exist. E.g., the Network Time Protocol
(NTP) includes time synchronisation via network in the OS. In that sense the Time Service
is a reinvention of the wheel that synchronises client applications with a central server
taking into account the network transportation delay. As the Time Service is the simplest
service of the LCSP it was used as a testbed for the remote service framework. This service
was developed as a prototype for all other remote services. An advantage of the Time
Service is that it is natively integrated into the control software and its synchronisation
calls can be used to trace the healthiness of the services. By default all applications and
services synchronise every 60 minutes with the Time Service. The corresponding messages
can be used to determine whether a service was running at a specified time by querying
the database.



63 4.3. RESOURCE MANAGEMENT/INTERNATIONALISATION

4.3 Resource Management/Internationalisation

The LUCIFER project is an international project and thus has special requirements on
localising the software. The whole control software source was written and documented
in English. On the user-side of the software it was intended to externalise all strings and
formatting information to realise Internationalisation (I18N). Therefore the Resources
(R7S) handling R7S class and the formatting I18N class have been developed. These
classes allow to load strings from external files and apply text formatting functions. All
packages developed in the scope of this thesis contain classes that start with <R7S>. These
classes provide access to the I18N data. This access is realised through static methods that
use a default value in case of missing property files that contain the I18N mappings for
different locations.

Besides externalising strings both classes provide formatting capabilities. By passing
an array of objects to the R7S methods these parameter are automatically included into
the resource string. For that reason special formatting tags need to be included in the
resource string. E.g., <{0} likes {1}> realises a simple insertion of two values. As the
text formatting capabilities of Java allow to specify formats independently of the used
locale any methods to ensure a specific data format for each locale are dispensable. E.g.,
<{0,number,#0.000}> defines that the passed number object is always displayed with 3
decimal digits and may be padded with zeros. If no particular number format is specified
the default format of the used locale is applied. Thereby the correct usage of decimal sepa-
rators and date formats is guaranteed in any locale. Finally the choice format can be used
to improve the readability of typified number values. E.g., <{0,choice,1#ONE|2#TWO}>
transforms a number value of 1 or 2 into the corresponding word.

4.4 The Persistent Data Storage

As in any larger software project the LCSP needs to store volatile application data perma-
nently. This persistently stored data can either be input or output of an application. The
input can e.g., be configuration data that specifies the behaviour of the application or data
that needs to be processed. Besides the science data of the detector, output generated by
the LCSP are e.g., the messages that notify on the system status, the journalised instru-
ment status or the logged transmissions of the electronics. Persistent data storage can be
realised as plain file or database storage depending on the kind of data and the anticipated
post processing. In distributed systems the persistent storage is often centralised to reduce
the data management complexity that is required to combine the scattered data.

In principle Java is equipped with its own object storage capabilities that store and load
serialised object data streams to/from disk (compare Section 4.1.1). The drawback of this
storage solution is that the format of the serialised data is not human readable meaning
that special tools to view and edit it are demanded. Therefore wherever applicable the
XML data format was applied for plain file storage while content that requires to be
searchable was stored in an SQL database.

4.4.1 The XML Transformation Framework

Many of the original tapes from the Apollo 11 Moon landing have got lost in the NASA
archives. Those tapes that still exist contain data sets that nobody can decipher and
interpret because the knowledge of the used data format is lost (see Harold and Means,
2004). To solve such problems the Extensible Markup Language (XML) allows to structure
data by user defined tags and ensures that the format is tightly coupled with the content.
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A framework was developed to realise the conversion between objects and XML struc-
tures. This framework is shown in Figure 4.2. It is part of the Configuration Service because
its main task is to persist configuration values. Even though the framework is based on
only two classes it offers very powerful data transformation capabilities and therefore is
extensively used for XML data access. The XML transformation system uses the Document
Object Model (DOM) API of Java. The org.w3c.dom package contains all functionalities
to parse a syntactical correct XML representation into a structured tree. This allows to
access the nodes that contain the XML information directly without manually parsing
files or creating XML tags. The transformation between the structured tree and the XML
representation is handled by the DOM API. The semantical interpretation of the nodes
is done in the XMLConnector class. This class uses the predefined markup strings of the
XMLConnectorDefaults interface to encapsule/extract all primitive data types in/from
corresponding DOM nodes. Exceptions that are thrown during data transformations are
typified as XMLConnectorException or DOMAccessException classes depending on the
allocation of the exception.

The XMLConnector class uses the org.w3c.dom package to realise direct access to
the file and the DOM representation. Static auxiliary functions allow to find nodes in the
tree or extract data. As the XML transformation of the LCSP was designed for the con-
figuration value storage the XMLConnector class is able to encapsule data sets within a
name and usage tag. This allows a data separation based on the application/service that
is associated with the data. The tight data-application coupling is implemented by the
remote service framework that is responsible for embedding configuration capabilities in
every service. Instead of directly using the XMLConnector class the XMLConnectorAc-
cess interface grants access to the functionalities. This allows to exchange or modify the
implementation of the connector without changing the utilising classes.

The XMLLizer class implements methods to execute the transformations between an
object and a DOM representation. This transformation is realised by recursively analysing
an object. All attributes of the analysed object that are primitive data types are trans-
formed by an XMLConnector instance. Those attributes that are objects themselves are
analysed and transformed accordingly. The recursive analysis of objects is based on the
Reflection API of Java. This API allows to examine the attributes of an object during run-
time and to exclude those attributes that are marked as transient from the transformation.
This is comparable to the serialisation mechanism of Java. As an XML transformation is
supported for both directions the Reflection API is also used to create objects from their
DOM representation. Therefore an empty constructor is demanded for all objects that
should be transformed. The attributes of the created objects can then be modified with
direct Reflection access.

Essential for a correct recursive analysis is the detection of cycles in the data structure
and an appropriate XML mapping. An infinite recursion due to a cyclic data structure
leads to an overflow of the call stack. The detection of cycles is implemented by a stack that
holds all transformed objects and therefore can be used to exclude already transformed
objects from a repeated analysis.

4.4.2 The Configuration Service

Instead of implementing a persistence mechanism for the configuration values in every ap-
plication of the LCSP it is included as a framework in the System Tier. The Configuration
Service enables a central management of configuration values. This is realised by remote
methods that persist the DOM representation of objects at the location of the Configu-
ration Service. The XML transformation of objects is done by the framework presented
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in Subsection 4.4.1. The available remote methods are defined in the RMIConfigService
interface and implemented in the RMIConfigServiceImpl class. Besides the methods that
import or export a DOM tree the XML representation can be accessed directly. Other
methods allow to clear or reload the DOM representation from file. Important for the
Configuration Service is the implementation of the .terminate() method which ensures
that the configuration values are written to disk before the service is ended (compare
Subsection 4.1.3).

The remote export and import methods of the Configuration Service require a DOM-
Access conform object. This interface specifies that an implementing class must have
methods to support the two-way transformation. This is comparable to the .writeOb-
ject(out) and .readObject(in) methods that specify the serialisation process of an object.
The extending IdentifiedDOMAccess interface can be used to add a special identifier tag
to an object as it is needed in data structures like Hashtables. The XMLConfig class pro-
vides a master implementation of the DOMAccess interface. All classes of the LCSP that
contain configuration values inherit their functionalities from this class. To reflect this de-
pendency the names of those classes start with <Config>. The JavaDoc HTML pages of
the configuration classes describe the individual parameters and their usage. The required
export and import methods ensure the transformation of an object. Therefore all extend-
ing classes are analysed automatically. The XMLConfig class administrates the date the
configuration was loaded from file. This is necessary to be able to distinguish between a
default configuration and a dynamically loaded one. Figure 4.2 demonstrates the relation
between the ConfigConfigService class and the XMLConfig class as well as its default
values and static reference. The static reference is used to access the configuration values
directly. By using the ConfigClient implementation the XMLConfig class provides two
methods to initiate the export and import of the configuration values. Methods without
a parameter use the remote access to the Configuration Service to pass the configuration
objects to the remote service. Then the remote service uses their DOMAccess capabilities
to transform these objects and insert or change their DOM representation.

The remote service by itself is only responsible for persisting the DOM representation
centrally. Direct access to the service is granted by the ConfigServiceClient class. This
class allows to perform all service related tasks that are not included in the ConfigClient
implementation. The data transformation is done by the XML transformation framework
that is included by the XMLConfig class in every extending object. The core implementa-
tion of the centralised configuration management is found in the ConfigClient class. As the
Configuration Service is a remote service its location and access parameters must be speci-
fied. Each service must have a local configuration file to store just these access parameters.
All other configurations are stored centrally at the Configuration Service. Therefore the
client needs to manage its local configuration file. If the configuration service is not used
all configuration values are stored locally by the client. The name of the local configuration
file as well as the utilisation of the Configuration Service can be changed by the corre-
sponding methods. These methods are included in the parsing process of the command
line (compare Appendix A.1). This parsing is made available to all services/applications
by the remote service framework.

The capability of the client to manage a local configuration file is used by the Con-
figuration Service to realise the file storage. Apart from the remote methods the client
implementation is in fact the service core. The advantage of the client is that every DOM-
Access conform object which is exported or imported passes the corresponding methods.
It makes no difference whether a configuration is kept centrally or locally. This enables the
client to have a listing of all used configurations of an application. This capability is in-
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cluded in the remote service framework and allows to modify configuration values without
knowing the currently selected storage process of the configuration values of a service.

4.4.3 The Database Storage Framework

The database storage framework was implemented to unify the database access. In the
LCSP this framework is used to log the hardware communication of the Control Tier,
to persist the current instrument status and to store the information of the message ex-
change framework. It is based on the Java Database Connectivity (JDBC) API of Java.
This framework can be divided into three section (see Figure 4.3). These sections provide
an interface to the objects that should be stored, prevent data loss and manage the accessed
databases, respectively. All objects that should be persisted must implement the SQLize-
able interface that enables each class to handle its database storage. The .sqlize(Database)
method is called by the database client that passes the Database object that should be
used for storage. If an object should be stored that does not implement this interface its
string representation is generated and stored instead. Both, the data loss prevention and
the database management is implemented in the DatabaseClient class.

Objects are written to local files if the database server could not be reached or produces
an error during a write access or if the database storage in general is disabled. One part of
these files contains the acronymXML transformation of the objects. The transformation
is automatically split into parts to guarantee a certain file size. This XML storage is
demanded e.g., to dump and analyse the hardware communication of the Control Tier. The
other files contain a queue of DatabaseObject objects. These queues are stored with the
internal serialisation mechanism of Java. If the database client detects that a previously not
accessible database server is operational again a new RebuildThread object is activated.
As every DatabaseObject contains the name of the database where the object should be
persisted the RebuildThread can reload the queue and send each object to the appropriate
database. This ensures a fully transparent and reliable data storage.

All available Database objects are managed by the DatabaseClient object. This is done
in a Hashtable that maps an identifier to each Database object. These identifiers must
be specified when calling one of the storage methods of the client. The client supports
direct and buffered persisting of objects. If the buffered storage method is used the client
stores the object in a queue that is processed later on. This allows the calling thread to
continue its work without waiting for the database operation to be finished. Each Database
object grants direct access to a JDBC database connection. Therefore each database has
a DatabaseAccessData object that specifies the connection modalities. The specification
of the correct driver is very important to create a database connection. In the LUCIFER
project a MySQL server is used. Thus the corresponding MySQL connector needs to be
specified as the driver.

4.5 The Message Exchange Framework and its Service

In a distributed system a centralised message processing is important to track the status of
the sub-components. Without such a system the user would be responsible for gathering
the information from every service. This would demand the scanning of the log files of
every application to obtain the required information. In the LCSP the message exchange
framework is used by every application to create and transport messages to a central
service. This Message Service is responsible for persisting the messages and distributing
them to the connected client applications.
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Type Scope Level

User
general user notifications, e.g., on service status or
executed operations highest to lowest

System
status of the LUCIFER system, e.g., of the opto-
mechanical units or the calibration unit medium

Error
description of errors that occur during software ex-
ecution highest to lowest

Instrument
information on executed motion sequences of the in-
strument hardware controlling services highest to lowest

Debug
additional execution information that is used to
maintain the software highest to lowest

Table 4.1: Overview of the message types and available significance levels.

The message exchange framework is designed to handle several kinds of messages.
Therefore the messages are subdivided into 5 classes which use a level to classify their sig-
nificance (see Table 4.1). In Figure 4.4 the classes that represent the individual messages
can be found. All specialised message classes inherit their capabilities from the abstract
Message class. These classes implement the .getIntType() method and return the corre-
sponding type defined by the MessageTypes interface. The specialisation of the classes
is reduced to the type and the individual constructor. E.g., the ErrorMessage class sup-
ports only the creation of messages that specify a Content object instead of a simple string
while the UserMessage class provides both options. The SystemMessage class does not
allow to specify the level because all messages of this type use the medium level. The
supported level values are specified in the LevelTypes interface while the concrete level of
a message is represented by a Level object. Each specialised Message object has a Level,
a TimeStamp, an InvocationAddress and a Content object. The TimeStamp and the
InvocationAddress objects are mandatory to store time and place the message was cre-
ated while the Content object stores the information. The constructor of the TimeStamp
class uses a TimeClient instance to generate a time stamp that is synchronised with the
Time Service. The InvocationAddress object is created directly in the Message object
constructor. This is done by calling a private method that extracts the current process
stack information and uses the Reflection API of Java to create a new InvocationAddress
object.

The Message class itself implements the persistent storage of the messages. Therefore
a Message object can be transformed automatically into its XML representation or can
be stored in an SQL database. The definition of the XML tags is stored in the XMLMes-
sageDefaults interface. These definitions are required by the Message implementation to
create the DOM tree that is demanded for the XML transformation. The MessageSQL-
izer class that is used by the Message implementation contains all methods to store a
passed Message object in a database. The storage of the messages is based on the generic
frameworks presented in Section 4.4. Therefore changes to the data structure require only
local adaptions without the need of modifications to the frameworks.

The design of the Message Service and its clients is presented in the upper part of
Figure 4.4. The central component of this diagram is the RMIMessageServiceImpl class
that realises the centralised message processing. This is done by receiving the messages
from the connected MessageClient instances in the distributed applications and by for-
warding them to the registered listeners. The RMIMessageListener interface defines the
functionalities of the listeners that are used for remote call-back methods. These meth-
ods provide the ability to process incoming messages and the event of being disconnected
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from the server. When a listener is connected to the service a MessageSelector object is
required. This object specifies the type and level of the messages that should be forwarded
to the listener. All connected listeners are managed by the service in two Hashtables. One
of these tables uses the RMIMessageListener objects as a key. This is required to support
management functionalities. The other table uses a nested mapping to retrieve a vector of
all RMIMessageListener objects that a registered for a specific message type and level.
This mapping increases the speed of finding the appropriate listeners. The connected lis-
teners are notified by an independent thread that consecutively processes the message
queue. This is done to ensure an undisturbed processing of incoming messages. The used
subscriber paradigm allows to implement an asynchronous communication between the
server and the clients as well as to minimise the network traffic.

Besides forwarding the incoming messages to the connected listeners the Message Ser-
vice is responsible for persisting the data. This functionality is realised on basis of the
corresponding database storage framework. Every Message object provides the function-
ality to be transformed into XML or to be stored in a database. The central Message
Service uses these functionalities. If the service is ended the .terminate() method is in-
voked. This allows the service to finish processing of messages and to store all queued
messages or at least print them to the console.

The MessageClient class provides a direct connection to the service. When a new
Message object is created the constructor sends this object directly to the service by using
a MessageClient instance. This minimises the programming effort to create a message and
process it. As the message creation process should not be dependent on the remote method
invocation and corresponding network latencies the messages are stored in a local queue.
This message queue of the MessageClient object is processed by a separate thread that
handles the sending of the messages to the RMIMessageServiceImpl remote instance.
Additionally the MessageClient object holds a reference to an RMIMessageListener.
This listener is used to process the messages not transmitted if either the queue is full or
the application is ending.

The user of the Message Service can directly view the messages by using one of the
listener applications. This can be either a simple command line message display or a GUI
application that enables the user to specify filter criteria. The benefit of this approach is
that messages can be displayed at the moment they have been created. The disadvantage of
an on-line display is that older messages must be dropped and a comprehensive search can
not be supported. This is related to the pre-selection of messages by type or level directly
at the central Message Service. The most powerful access to the messages is granted by
the message browser. This browser allows to search all persisted messages in the database
(compare Section 3.4.2).
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The Control Tier

A
ll communication with the hardware of
the LUCIFER instrument is handled in
the Control Tier. An abstract commu-

nication framework provides basic functionalities
to exchange serial data with an electronic device.
This tier operates the electronics that controls

the opto-mechanical parts as well as the hard-
ware that monitors environmental parameters of
the instrument. As a central instrument status
logging facility the Journalizer Service is pre-
sented.

The Control Tier is the interface between the instrument hardware and the LCSP. It
contains the services that operate the electronics. This electronics is used to log and control
environmental parameters of the instrument like temperature and pressure. Furthermore
the opto-mechanical units of the LUCIFER instrument are accessed by electronics. The
complex serial command exchange between the controller firmware and the software is
covered by the services of the Control Tier. These services exhibit simple but powerful
interfaces to the services of higher tiers (compare Section 3.2).

5.1 The Serial Communication Framework

The electronics of the LUCIFER instrument is equipped with serial RS232 ports. These
ports are connected to a port server that provides direct access to the serial ports via
the TCP/IP network protocol. A documentation of this device is presented in Lehmitz
(2008c). The PortServerConnection class is the core element of the serial communication
framework. This class realises all functionalities that are required to connect to a serial port
of the port server hardware. It includes the methods to connect/disconnect and to send
data. As the hardware communication is asynchronous a ListeningThread object handles
the incoming data and calls an abstract data processing method of the connection. This
method must be implemented by every concretised connection class to perform the data
processing. Primarily the PortServerConnection class implements the Listener interface
to define the interaction with the ListeningThread object. If a concretised connection class
implements the IntegerListener interface instead, the transmitted data is treated byte-
wise instead of doing an ASCII interpretation. This is required by some of the controlled
electronics. Every data that is exchanged between the hardware and the software passes
one of these classes. Therefore the data can be encapsulated in Transmission objects and
stored in an XML file or SQL database. These Transmission objects provide additional
information on the source/target and time of a data package. By implementing the logging
capability in the core classes of the serial communication framework all data exchange over
a socket connection can be analysed.

The central port server hardware that connects to the electronics is covered by the
Port Server Service. This allows to centrally manage the mapping between the ports and

75
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the attached electronics. In case of a changed cabling only the mapping of this look-up
service needs to be updated while the individual services can stay unchanged. Nonetheless
the PortServerConnection class can still be used to create direct connections by speci-
fying a socket address. For use with the virtual instrument it is even possible to create
connections that are just simulated and do not establish a connection at all.

5.2 The Control Electronics Services

The opto-mechanical elements of the LUCIFER instrument are controlled by three elec-
tronic boxes. These are the MCU, the Switch Box and the HIRAMO electronics (compare
Subsection 1.3.3). All three electronic boxes are custom-made by the institutes that con-
tribute to the project. The firmwares of the applied micro-controllers use a similar commu-
nication scheme. Therefore all services make use of a common framework that provides all
the functionalities for analysing and composing command or response strings. A first ver-
sion of this framework was developed in cooperation with Andreas Zeh (see Zeh, 2005).
The relation between the three control services and the command analysing framework is
shown in Figure 5.1.

5.2.1 The Command Analysing Framework

The command analysing framework handles the communication with the control elec-
tronics. It consists of three parts: One to realise the connection with the hardware and
to synchronise the communication, one to parse and create communication strings and
one to allow the processing of a predefined chain of actions (see Figure 5.1). The con-
nection with the hardware is based on the serial connection framework. Therefore the
generic ElectronicConnection class extends the PortServerConnection class. Addition-
ally the functionalities of both other parts are incorporated into this generic connection
class. This allows to use the ElectronicConnection class for hardware communication
as well as for parsing and creating communication strings and processing a predefined
communication protocol. Besides the classes for direct hardware communication the Com-
municationHandler class is mandatory to communicate with the control electronics. The
inter-service-communication was chosen to be synchronous. As the electronics uses an
asynchronous communication protocol all commands need to be synchronised to fit into
the service communication model. Therefore the responses of commands that are executed
in parallel need to be allocated to the corresponding command calls. In addition each
handler can store a timeout value. This is necessary to notify and to wake-up the threads
that initiated the communication calls. Without such a command synchronisation, parallel
execution of commands would not be available and e.g., the MCU could only move the
motors consecutively.

The second part of the command analysing framework contains all elements to al-
low parsing and creating command strings. Over the development period of the LUCIFER
project the syntax, the structure and the semantics of the hardware communication strings
changed several times. Therefore a flexible and configurable interface to the hardware was
developed. The Parser class provides capabilities to translate between a software side and
a hardware dependent representation of commands/responses. Two groups of objects exist
to interact with the Parser class: These are the ParserObject and the ControllerObject
classes. The ParserObject class and its descendants are the software-side representation of
commands/responses that are sent to/received from the control electronics. These objects
can be used to access commands/responses without knowing the actual conversion on the
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hardware-side. On the other side the ControllerObject class and its descendants contain
the hardware communication strings. These response and command strings can be trans-
formed into their ParserObject counterparts and vice versa by using a Parser object. To
realise this two-way-parsing the Parser object uses a Tokenizer object, a Communication-
Library object and a Scanner object. The Tokenizer class defines methods to split a string
into tokens by using predefined delimiter symbols. The CommunicationLibrary class con-
tains methods to manage sets of commands/responses. These sets contain the information
how a ControllerObject object is composed from the data of a hardware-independent
ParserObject object. If a ControllerObject is passed to the CommunicationLibrary all
sets that match the represented command/response string are returned. These sets can be
used to create the required ParserObject representation. In the other direction a passed
ParserObject object will result in the sets with the information to create a string repre-
sentation. As the creation of a ParserObject is more complex than the creation of a string
representation the Scanner class provides the required methods. The Scanner class allows
to do a backward scan of a CommunicationLibrary object for the occurrence of a commu-
nication string. Thereby it is important to know which parts of the communication string
contain variable data and which parts can be used for identification. This information is
encoded in the communication sets and needs to be evaluated during scanning. The results
of a search are represented by ScannerResult objects that contain the CommunicationSet
object that is required to finally create a ParserObject instance.

The last part to interact with the electronics is the processing of a predefined grammar.
Every interaction with the hardware consists of at least two communication activities. A
command is sent and a response from the hardware is received. The grammar is used to
model the individual communication protocols of the commands. Each of these communi-
cation protocols is represented by a tree of ProtocolItem objects that can be subdivided
into ReceiveItem objects and ControlItem objects. ControlItem objects are used for ac-
tions like sending a string to the hardware or supervised waiting for a response string to
be able to create a time out and prevent from endless sleeping. ReceiveItem objects are
used to define the further processing of a protocol in dependency of the received hardware
responses. All communication protocols are stored in a Grammar object. To allow an effi-
cient access to the protocol trees the items are grouped by their command/response types.
The processing of a grammar, e.g., the stepwise execution of a protocol tree, is done in the
ElectronicConnection class. Thereby the complexity of creating/parsing commands/re-
sponses and the correct execution of the protocol is hidden from the electronics services.

Both the parser as well as the grammar are configured via XML files. This allows
fast adaption to changes of the protocol, e.g., to the order of actions, as well as changes in
creating/parsing the commands without touching the source code. To add a new command
its syntax needs to be put in the communication set description and a protocol has to be
assigned. After the configuration has been modified the new functionality can be accessed
through the ElectronicConnection class.

5.2.2 The MCU Service

Both MCU Services are the central element of the Control Tier (compare Figure 3.1).
They are responsible for accessing the control electronics of all opto-mechanical parts of
the LUCIFER instrument. A detailed description of the applied electronics is presented
in Lehmitz (2008d). As the instrument and MOS electronics only differ in their con-
figuration, both services are realised by one implementation. The MCU Services grant
access to the corresponding control electronics over an RMI interface. The RMIMotion-
ControlUnitImpl class is the implementation of this interface. It allows to individually
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or synchronously move the stepper motors, to stop the motion of elements, to power the
motors, to control the magnetic locks, to enquire the orientation/position of elements and
to read the status of micro-switches. Another important functionality of the RMIMotion-
ControlUnitImpl class is the ability to stop and prevent any kind of motion. For this
reason the RMIMotionControlUnitImpl class keeps track of all ongoing motions in order
to be able to issue the required emergency stop commands.

The RMIMotionControlUnitImpl class provides simple methods that hide the com-
plexity of the whole control process. E.g., the RMIMotionControlUnitImpl.moveMotor
(motorAddress, steps) method does several tasks automatically. First this method ensures
that it is allowed to move the specified motor. Therefore it checks if the MCU is approved
to move and that the selected motor is currently not moving. While the calling thread is
paused the communication with the electronics is handled. If within a pre-calculated time
the control electronics does not report the motion as finished, exceptions are thrown and
the waiting thread is notified. After a motion is completed the connected micro-switches
are evaluated and if necessary further actions are accomplished.

While the RMIMotionControlUnitImpl provides the access to the functionalities of
the MCU electronics, the MCUConnection class contains the implementation of the MCU
interaction. This class is an extension of the ElectronicConnection class (see Figure 5.1).
To synchronise the execution of motion a hashtable of CommunicationHandler objects
exists. Each movable unit is synchronised separately with its own CommunicationHan-
dler object. Additional CommunicationHandler objects exist to synchronise setup, stop
and query commands. To use the correct handler, the MCUConnection class contains a
method for a command-dependent look-up. The timeout values that can be stored in the
CommunicationHandler objects are calculated by the MCUConnection class, too. This
is done by using LuciferVR (compare Chapter 8). The MCUConnection class realises an
interface to the real hardware. Hence this class can be assigned to send the commands to
the virtual instrument. This allows to switch between a simulated and a real instrument
usage.

Both the configuration of the grammar and the communication sets, required by the
ElectronicConnection class, and the configuration of the electronics is stored in a joined
XML file. The configuration of the electronics is evaluated on every service start-up, trans-
formed into command strings and sent to the hardware. If a hardware reset or communi-
cation failure is detected the setup of the electronics is re-sent automatically. This ensures
a functional and reproducible state of the electronics.

5.2.3 The Switchbox Service

The Switch Box Service provides access to the switches of the MOS Unit, to the orientation
sensors of the instrument and to the status of the strain gauges of the mask grabber
(see Subsection 1.3.3). As the hardware allows to trace the status of a switch and detect
cabling/contact problems of each switch, the service must be able to report both, switch
setting and fault status. To support changes in cabling, the service can be configured to
change the assignment of the switches. The service is even able to ignore faulty switches
to allow an emergency operation of the instrument. To simplify the management of more
than 100 switches, each switch is either assigned to a motor or a mask of the MOS Unit.
This enables the Switch Box Service to look-up switches dynamically by an identifier and
report the status to the utilising services of the Instrument Tier.

The Switch Box Service is designed similarly to the MCU Service. The RMISwitch-
BoxImpl class is the implementation of the corresponding RMI interface, while the Switch-
BoxConnection class realises all hardware interactions. Only one CommunicationHandler
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object is required for command synchronisation, because the complexity of the interac-
tion with the Switch Box electronics is much simpler than the one of the MCU electronics.
Apart from the initialisation of the strain gauges, the Switch Box Service is only retrieving
the status of switches/sensors.

Likewise as the MCUConnection the SwitchBoxConnection class provides the option
of interacting with LuciferVR. Its communication configuration and switch assignment is
stored in an XML file, too.

5.2.4 The HIRAMO Service

Of all services that interact with the instrument hardware, the HIRAMO Service is the
most compact one. It was developed by Volker Knierim (see Knierim, 2009). As this
service only sends simple commands and receives responses that represent 16 switches
and the orientation of the instrument cabling, the ElectronicConnection is not used. No
complex communication protocol needed to be implemented and therefore the Grammar
class and it functionalities is not utilised. No synchronisation of concurrent commands via
CommunicationHandler objects is required, too. The HIRAMOConnection class imple-
ments a direct connection to the electronics by using the underlying serial communication
framework. This implementation detail was used to integrate an interface to the virtual
instrument.

5.3 The Interfacing Services to External Packages

Besides operating the LUCIFER instrument the LCSP needs to interact with external
software packages. In the Control Tier these are the telescope software (TCS) and the
detector readout package (GEIRS) (compare Figure 3.1). To include these software pack-
ages in the service structure of the LCSP, additional services are required that transfer
the command calls from the RMI interface side to command calls on the external software
package side. Both interfacing services that connect to existing software packages have not
been developed in the scope of this thesis.

The Telescope Service uses an ICE interface to send commands to the telescope con-
trol software. By wrapping the method calls to the IIF, an additional interface layer is
introduced. This layer hides the details of executing the ICE calls from the LCSP services
(see Subsection 3.4.4). The detector readout software GEIRS has a socket based interface.
Tobias Muhlack implemented a service that wraps the corresponding command strings
into RMI methods of the Readout Service. These methods allow to specify all required
parameters like readout mode/configuration, integration time or file name and to perform
an integration. See Muhlack (2006) for more details on the available functionalities. Due
to a missing software interface in the readout software package, all information that is
required to create the FITS header has to be written to an external, plain text file. After
the readout process, this file is scanned by GEIRS and the included data is stored together
with the detector data (see Subsection 3.4.3). This exchange of meta-data should be part
of the Readout Service as well. Currently the header information is however generated by
the Journalizer Service.

5.4 The Environment Supervising Services

Besides actively controlling the opto-mechanical parts of the LUCIFER instrument, the
LCSP has to monitor and control its environment. These services are part of the Control
Tier, too.
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Figure 5.2: Class diagram of the Calibration Unit Service. GREEN : Classes that realise the
calibration service. YELLOW : Hardware communication via PortServerCon-
nection class. RED : Client access to the service.

5.4.1 The Calibration Unit Service

The Calibration Unit Service is the service of the Control Tier that was developed first.
It is responsible for interacting with the electronics that controls the lamps required for
spectral calibration of LUCIFER. The layout of the electronics is documented in Lehmitz
(2008a) while the operation of the mechanical parts is presented in Lehmitz (2008b). The
applied electronics board is able to control 8 relays. It has a serial port that is attached
to the port server which provides TCP/IP access (see Subsection 1.3.3). In Figure 5.2 the
classes of the Calibration Unit Service are presented. The upper part of the UML dia-
gram contains the classes that implement the remote service. The RMICalibrationUnit
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interface defines the methods that are accessed via RMI. These are the methods to switch
calibration lamps on and off as well as the methods to enquire the current lamps status
or to retrieve a description of a lamp as a DescriptionObject entity. The RMICalibra-
tionUnitImpl class contains the core of the service. The implementation of the previously
mentioned methods is part of this class. Additionally this class uses a CalibrationUnit-
Status object to reflect the current status of the lamps. As the CalibrationUnitStatus
extends the JournalizerObject class all changes of the lamp status are logged centrally by
the Journalizer Unit (see Section 5.5). More details on the logging process are presented
in Section 5.5. The structure of a remotely accessible service can be found in Section 4.1.

The communication with the electronics board is based on a proprietary command
language that uses non-ASCII characters. All commands are composed of bytes that specify
the command, the card address, the parameters and a parity check byte. Therefore the
RMICalibrationUnitImpl class uses a CalibrationUnitConnection instance to handle
the communication. This class is responsible for translating all incoming and composing
all outgoing byte sequences. Analogue to the implementation of the MCU Service the
PortServerConnection class is extended. By implementing the IntegerListener interface
the underlying serial communication framework is notified to process byte streams instead
of ASCII streams. The limited number of commands that needs to be exchanged with
the electronics does not require the usage of the command analysing framework that is
presented in Subsection 5.2.1. Instead the 5 command bytes are constantly defined by
the CalibrationUnitDefaults interface and the 2 possible parameters are specified in the
ConfigCalibrationUnitServer class and therefore can be configured via the Configuration
Service (see Section 4.4.2). The hardware of the calibration unit is only able to process
the commands consecutively. For this reason the CalibrationUnitConnection class uses
just one mutual exclusion (mutex) object to synchronise the outgoing commands.

The access to the Calibration Unit Service, either by a GUI or by other services, is
made available by the CalibrationUnitClient class. This class handles all tasks that are
required to remotely call the methods defined by the RMICalibrationUnit interface.

5.4.2 The Services for Temperature Monitoring and Controlling

The LUCIFER instrument is cryogenically cooled down to 60 K to reduce its thermal inter-
ference with the observed scientific targets. For this reason the temperatures of important
elements of the instrument need to be monitored and the detector and its fanout board need
to be thermally stabilised. This is done with two electronics from LakeShore Cryotronics,
the 218 S-model temperature monitor and the 331 S-model temperature controller. Details
are summarised in Lehmitz (2006). Both electronics use the same command language
which allows to reuse the software of the Temperature Monitor Service. This service was
developed first. The Temperature Control Service was developed later as a copy of the
Temperature Monitor Service. The required modifications are not part of this thesis.

The class diagram in Figure 5.3 presents the Temperature Monitor Service. Its design is
similar to the design of the Calibration Unit Service. It is divided into the classes that cre-
ate the service, handle the connection details and provide client access to the service. The
RMITemperatureMonitor interface and the RMITemperatureMonitorImpl class realise
the functionalities of the service. These are the ability to measure temperatures, to send
initial configuration commands and to set alarm parameters. The temperature retrieval
can be done directly or buffered. Direct temperature retrieval forces the RMITempera-
tureMonitorImpl to communicate with the hardware and to return the current values.
The temperatures that are received from the hardware are locally stored in an Instru-
mentTemperatures object. The InstrumentTemperatures class extends the Journalize-
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Figure 5.3: Class diagram of the Temperature Monitor Service. GREEN : Classes that im-
plement the service. YELLOW : Hardware communication via PortServerCon-
nection class. RED : Client access to the service.
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rObject class to support processing by the Journalizer Service (see Section 5.5). Buffered
temperature retrieval returns these stored values instead. This reduces the amount of com-
mands that is sent to the hardware. To minimise the effects of obsolete temperatures, the
Temperature Monitor Service waits for a predefined time and refreshes its values auto-
matically. The logging interval of the Temperature Monitor Service can be changed during
operation. If this value is set to a value that is below 1 ms, adaptive logging is used. This
logging proceeding monitors the variation of the temperatures. If the temperatures stay
constant within a configured tolerance for a defined number of measurements, the length
of the measuring interval is doubled. In case the values exceed the allowed tolerance level
this interval is halved. The maximum and minimum time between two measurements can
be configured, too.

The communication with the electronics is based on an ASCII command language that
uses mnemonics to increase readability. Both electronics are connected to the port server
that is accessed via TCP/IP. On the software-side the communication with the electronics
is done by the TemperatureMonitorConnection class that extends the PortServerCon-
nection class of the serial communication framework. Only one command can be processed
by the hardware in parallel. Therefore only one mutex is required to synchronise the com-
mand calls.

In contrast to the Calibration Unit Service, the client access is done with two classes.
The TemperatureMonitorClient class implements the general access that is used by other
services or a GUI. Additionally the CommandLineTemperatureMonitor Client class al-
lows a command line interaction with the Temperature Monitor Service.

5.4.3 Other Environment Supervising Services

All other environment supervising services have been built following the design of the
services presented above. Even though their implementation does not belong to the scope
of this thesis, for the sake of completeness their duties and responsibilities is presented
hereafter.

The Pressure Monitor Service

To be able to cool LUCIFER down to temperatures of ≈60-70 K, the dewar needs to
be evacuated to ≈ 10−7 bar. Therefore the pressure inside of the instrument needs to be
monitored. This is done via a TPG 262 pressure monitor that is manufactured by Pfeiffer.
The description of the pressure monitor hardware is part of Lehmitz (2008a). The Pressure
Monitor Service provides the functionality of logging the instrument pressure and sending
an initial configuration to the hardware.

The Turbo Pump Service

Once the pressure inside of the LUCIFER instrument is reduced with a scroll pump it is
sustained via a turbo molecular pump. The Turbo Pump Service connects to the control
electronics of the control hardware, sends an initial configuration and monitors the revo-
lution velocity of the connected turbo pump. This monitoring is done with a TCM 1601
controller from Pfeiffer that controls the magnetic bearing of the pump. More details on
the controller is specified in Lehmitz (2008e).
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The Rack Cooling Control Service

The Rack Cooling Control Service interacts with the electronics that controls the tem-
peratures of the electronics racks. Those electronics racks are mounted on the telescope
structure right below the instruments. To prevent the thermal interference with the obser-
vations the wast heat is dissipated with water pipes. The rack cooling control electronics
ensures a stable temperature within the racks. Therefore the water flow must be regulated
and for very low ambient temperatures even be switched off. The temperature measure-
ment and regulation is done by the Imago 500 from Jumo (see Lehmitz, 2008f). The Rack
Cooling Control Service initialises the regulation parameters and loggs the rack temper-
atures. Like all other environment services of the Control Tier the retrieved values are
stored by the Journalizer Service.

5.5 The Journalizer

In an instrument control software, one of the fundamental tasks is to track the instrument
status (see Requirement [U6], Section 3.1). In case of the LCSP a distributed system con-
trols the instrument. Several services exist that independently control the sub-systems of
the instrument. The status of the LUCIFER instrument is monitored by the services of
environment supervising services of the Control Tier. The other services of the Control
Tier that communicate with the control electronics and with the calibration unit are re-
sponsible for changes of the instrument setup. Therefore these services can either be used
to move opto-mechanical parts or enquire their position. The motion of the individual
optical elements of LUCIFER was found to be too complex to be solved monolithically.
For this reason individual services for each optical element have been created. These are
the services of the Instrument Tier. Their interaction with the instrument hardware is
based on the services of the Control Tier.

To synchronise the amount of services that work in parallel, a central logging service
was developed. The Journalizer Service accepts incoming status change notifications from
the services mentioned above. Besides the logging the Journalizer Service provides the
instrument status information to the services of the Operation Tier. The Readout Service
was not implemented in a correct manner. It should be changed to retrieve this information,
too. This would solve the problem with the temporary solution of creating the FITS header
in the Journalizer Service.

All services that make use of the Journalizer Service should implement the Journaliz-
able interface. By doing so these services can be triggered to update the part of the instru-
ment setup they monitor. During standard operation the services that observe environmen-
tal parameters automatically notify the Journalizer Service on a regular basis. The services
of the Instrument Tier change the setup of the opto-mechanical elements autonomously.
Therefore these services know when to notify the Journalizer Service. Figure 5.4 presents
the class diagram of the Journalizer Service. It is divided into three parts. The first part
contains all elements that build the service. The RMIJournalizer interface and its imple-
mentation define and realise the status storage and retrieval methods that are accessed
via RMI. The other classes are used to start, configure and run the service. The Jour-
nalizerProperties interface defines a new keyword. This keyword is passed to the created
virtual machine that hosts the remote instance of the service and defines the Hibernate
configuration file. In the second part the client implementation is realised. For the Jour-
nalizer Service it is important to store all changes of the instrument setup. Therefore the
client implementation that is used by the other services of the distributed system needs
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Figure 5.4: Class diagram of the Journalizer Service. GREEN : Classes of the instrument sta-
tus logging service. YELLOW : Abstract data structure to implement instrument
status reporting in LCSP services. RED : Failsafe client access to the service.
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to be fault-tolerant. In case of a broken connection to the Journalizer Service all status
changes must to be stored locally on disk by the client. If later the connection can be
re-established an instance of the RebuildThread class uses a JournalizerClient instance
to rebuild the status logs. This ensures that a status is never lost even though its pro-
cessing can be delayed. Therefore the RMIJournalizerImpl class must evaluate the time
stamp of every received JournalizerObject entity to store the statuses accordingly in the
database and to be able to represent the current instrument status. The last part con-
tains the abstract data structure that has to be extended by all logging services to reflect
their part of the instrument status. The JournalizerObject class contains all basic data
that is required to be processed by the RMIJournalizerImpl class. These are the time
the object was created and a unique key. A service that sends data to the Journalizer
Service just needs to extend the JournalizerObject class and add its own status informa-
tion attributes. Then all handling and storing is done by the RMIJournalizerImpl class
without knowing the precise implementation details. Additionally the JournalizerObject
class provides the functionality of automatically transforming any instance of an extend-
ing implementation in an XML representation. This is done by using the XMLLizer class
of the XML transformation framework (see Subsection 4.4.1). As the JournalizerObject
objects are stored by the RMIJournalizerImpl class in a hashtable, a key is required to
retrieve them. This key is defined by the JournalizerKey class. Such a key consists of a
usage and an object information. The usage information specifies where the information
belongs to. This can be either an identifier to discriminate between both instruments or it
can specify a system or engineering usage. The object type information of a key represents
the individual part of the LUCIFER instrument. The allowed values are predefined by the
JournalizerObjectTypes interface.

Besides these three parts the JournalizerException class and the NotYetJournal-
izedException class define the exceptions that can occur during status storage or retrieval.
These two classes are drawn separately because the defined exceptions are used in both,
the service and the client implementation.

A first base release of this service was created by Volker Knierim similarly to other
simple services (see Knierim, 2009). The full service functionality including the persisting
of the instrument status to an SQL database was implemented in the Journalizer Service
in the scope of this thesis. Additionally the Journalizer Service was enabled to rebuild the
instrument status from database for any given time. This allows the service to initialise its
status during service start-up and it can be used to trace a previous instrument status, too.
Even though this service does not know the data structure of the status information of each
individual service, the persisting is done centrally at the Journalizer Service. The database
access is realised with the Hibernate framework (see Subsection 3.4.1). This framework
allows to directly exchange objects with a database server. The only requirement is the
presence of a mapping information that enables Hibernate to translate between data stored
in tables and a Java data structure. In Appendix E such a mapping is presented.
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The Instrument Tier

T
he Instrument Tier contains the services
that control the opto-mechanical parts
of the LUCIFER instrument. All mo-

tions are modelled as finite state transition net-
works. The framework that handles the execution
of these motion sequences is presented first. In

addition the representation of states and transi-
tions is described. The service of the most com-
plex part of LUCIFER, the MOS Unit Service,
is presented in concepts. To document this ser-
vice and its functionalities comprehensively its
subunits are depicted separately.

To allow observations with the LUCIFER instrument, the opto-mechanical parts of the
instrument must be brought into specific states. It is necessary to change the optical setup
with regard to the scientific objective to achieve. This includes to select a wavelength
range by placing filters in the optical beam. These filters are stored in two filter wheels.
Additionally the spectral and spatial resolution is changed via the Grating Unit and the
Camera Wheel. The most important part of LUCIFER is the MOS Unit that allows to
select different long-slit masks for spectroscopy and to use custom-made MOS masks.
The other opto-mechanical parts are used for instrument checks, detector focusing and
compensation of disturbing effects like structural distortion or atmospheric effects.

All motions of the optical elements are controlled by the hardware interfacing services of
the Control Tier (see Section 5.1). The services of the Instrument Tier rely on the provided
functionalities of these underlying services which are accessed by the corresponding clients.
The motion of an opto-mechanical part demands more than a simple motion command
that is sent to the electronics. In most cases it is composed of a complex series of actively
moving and position probing commands. The task of the Instrument Tier is to model the
logics of these motion sequences and to implement simple interface functions that can be
access by the services of the Operation Tier. For the Filter Wheel Unit that can rotate
limitless the logics are very simple. In contrast, the MOS Unit has to exchange a free
mask between the cabinet and the focal plane. This exchange involves motions of many
parts with possible collision risks that might severely damage the instrument. Therefore
a huge set of very complex logics is required (compare Subsection 3.5.2). A dedicated
service exists for every opto-mechanical part of the instrument (see Section 3.2). To keep
these service implementations simple the common tasks of managing the complex motion
sequences are bundled in a framework.

6.1 The Sequencing Framework

The sequencing framework is designed to model motion sequences as finite state transi-
tion networks. In such a network actions transfer an element from one state into another.
The definition of sequences as a transfer between states allows to compose very complex
sequences from other sequences or basic prime actions. This can be used to reduce the

89
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complexity of a sequence and therefore improve their maintainability. Another benefit of
using finite state transition networks to model the motion logics is the ability to define start
and end states. These states are utilised to execute checks before and after every sequence
and therefore increase the execution reliability. No motion is started if an element is not
in the predefined state. As soon as a motion is ended malfunctions can be detected. In
such a case further motions are prevented and the involved risk of damage is reduced.

The elements of the sequencing framework class diagram (see Figure 6.1) are divided
into three groups. First there are the classes and interfaces that define and execute se-
quences. Second is the interface that defines access to the transitions. Finally there are the
interface and classes for state representation which are used as pre- and post-conditions
of the sequences. The elements of all these groups are based on fundamental elements of
the sequencing framework. The central element is the SequenceElement interface that
defines the core functionalities of every component of a sequence. These are the meth-
ods to retrieve description data for improving the feedback of information to the user
during sequence execution. The description data is encapsulated in a SequenceElement-
Descriptor object and contains a name, a basic description string and additional data
that allows to create a link to an opto-mechanical unit. The most important function of
every SequenceElement implementation is the ability to pre-calculate the time required
for execution. This information can be used to estimate the approximate time a complete
sequence will last and to inform the user in advance. Combined with functionalities of
LuciferVR to pre-calculate motion times of active elements an upper limit is presented to
the engineer. This feature was heavily used during instrument integration and is important
for system recovery measures. If an error during execution time calculation occurs an Ex-
ecutionTimeCalculationException is thrown. The SequenceElementImpl class contains
an abstract implementation of the SequenceElement interface and is extended by the
root elements of the groups previously described. During sequence execution the status
of a SequenceElement conform entity is reflected by a SequenceElementStatus object.
Besides the plain status information such an object stores the start and end time of the
execution. This data is evaluated to calculate the time actually required for execution.

6.1.1 The State Representation and Evaluation

The definition of states is elemental to model state transition networks. In Figure 6.1
the required classes and interface are grouped together. The central element to define
states is the State interface that extends the SequenceElement interface by a method to
execute a state evaluation. The StateImpl class provides an abstract implementation of
this interface. All descriptive functionalities are inherited from the SequenceElementImpl
class. Methods to store and retrieve the desired Boolean value as well as the value of the
last state check are implemented, too. The access to the methods of the StateImpl class is
synchronised with a mutex object to prevent overlapping evaluation which could result in
inconsistent checks. If an evaluation of a state fails a StateCheckException is generated.
Additionally the last exception that occurred is referenced by the StateImpl class.

To reduce the complexity of a concretised state implementation, states can be com-
posed of other states. This nesting of sub-states allows to create large decision trees. The
DecisionTreeNode interface defines the access to the elements of such a decision tree.
The defined methods are used to navigate within the tree structure and to evaluate the
Boolean state of a sub-tree. To support the tree structure a method to get the parent node
is implemented in the StateImpl class. The realisation of the DecisionTreeNode inter-
face is split into two versions. One to cover the requirements of a leaf node and another
that represents an inner node of a decision tree. Both, the DecisionTreeLeafNode and
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the DecisionTreeInnerNode class extend the StateImpl class to inherit basic state func-
tionalities. The abstract DecisionTreeLeafNode class misses a method to get the time
that is required for state evaluation. Therefore the concrete implementation of a state
is forced to specify this. In the exact same way every concretised state is compelled to
implement the DecisionTreeNode.evaluateDecisionTree() method to evaluate its Boolean
state. The DecisionTreeInnerNode class is the composing element of the decision trees.
It allows to combine sub-states with a Boolean operator. Therefore the implementation of
the DecisionTreeNode.evaluateDecisionTree() method evaluates the Boolean state of ev-
ery child recursively and combines their results with the specified operator. The same
depth-first search is applied to the evaluation time calculation process. Special for the
DecisionTreeInnerNode class is that new entities of inner nodes are created with a static
factory method. This ensures that only one instance of every inner node exists no matter
how many trees make use of this node. Another benefit of this global node creation is to
have an overview of all created states and their last evaluation value. This functionality
is used to improve the engineering process by providing detailed status information of the
instrument.

During sequence execution the check of a state is done in the SequenceImpl class. This
allows to detect errors during state evaluation and to throw corresponding exceptions. As
a sequence transfers an instrument unit from one state to another it uses these two states
as its pre- and post-conditions. The check of both states is an integral part of the sequence
execution process. Discrepancies between the anticipated state and the detected state of
a unit directly result in the creation and throwing of PreConditionsViolatedException
and PostConditionsViolatedException objects.

6.1.2 A Transition as a Prime Action

The transitions are the active elements of a finite state transition network. They realise
the prime actions that transfer the opto-mechanical parts of LUCIFER from one state
to another. Therefore the Transition interface contains only one method. This method
is called to execute an action. As every action requires a different time to execute, the
calculation of this time has to be done by the implementing classes

Because the sequences are composed of the transitions, the execution of these prime
actions is done by the SequenceImpl class. All transitions that are implemented extend
the SequenceElementImpl class and inherit the ability to reflect their status. The status
of a transition is changed accordingly during execution within the SequenceImpl class. If
such a transition produces an error during the execution, a new TransitionNotComplet-
edException object is created and therefore must be handled by the utilising sequence.

6.1.3 The Basic Transitions and States

The sequencing framework contains several concrete implementations of commonly used
transitions and states. These basic transitions and states as well as their inheritance topol-
ogy are presented in Figure 6.2.

The transitions are used to actively change the state of a unit. To be able to do so the
transitions require access to the hardware interacting services of the Control Tier. This
is done by using the corresponding client implementations of these services. With regard
to the three available hardware interfaces, the basic transitions are split into groups, re-
spectively. Every root element of these groups implements the Transition interface and
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adds additional methods to keep a reference on the required client. The group of transitions
which is used to access the Switch Box is the simplest one. Its only concretised implemen-
tation allows to zero the strain gauges used for the mask grabber of the MOS Unit. The
transitions of the HIRAMO group implement methods to control the cold clamps that are
used to increase the cool-down time for some optical parts. The largest group of transitions
is used to access the MCU. The TransitionMoveMotorSynchron class defines all methods
to drive several stepper motors synchronously. Therefore methods to keep the references
of the employed motors are part of this implementation. All other transitions of this group
can be associated to only one motor. For this reason the abstract TransitionMotorAction
class specifies the method to store the address of the used motor. The classes that extend
the TransitionMotorAction class contain concretised implementations of the MCU Ser-
vice functionalities. These are the methods (i) to move a motor by a specified amount of
steps, (ii) to an absolute position or (iii) to an absolute angle. The amount of steps can be
specified as an array to model more complex successive motions. For both absolute mo-
tions an allowed delta can be specified as well as an amount of correction tries. When the
position of a motor is found to be outside of the predefined limits the specified number of
retries is executed automatically to reach the required value. A similar concept is used by
the TransitionMoveUntilStateReached class to reach a given state. The array of steps is
executed as long as the end state is not reached. Another speciality of the absolute angle
motion transition is the ability to specify several angles. When specified the transition
chooses the angle that is closest to the current position of the motor. Directly connected
to the motion transitions are those transitions that initialise or set the internal position
counter of the electronics or set the speed. The remaining basic transitions control the
locking magnets and the power characteristics of a motor after a motion. Important for
the creation process of a transition object is that all parameters must be specified during
instantiation. This parametrisation makes every object unique and allows to execute a
transition without passing values.

Corresponding to the definition of basic transitions an implementation of fundamental
states exists. These states are grouped similarly to the transitions. Besides the three groups
that use the clients of the three hardware services an extra group contains composed states.
The states of this group extend the DecisionTreeInnerNode class and combine several
switches of the Switch Box to represent the state of a locking magnet. As these magnets
are associated to a motor the corresponding address must be specified during state cre-
ation. All other basic states extend the DecisionTreeLeafNode class. The concrete state
of the HIRAMO group is used to access the state of a switch which is monitored by the
hardware. The state of switches that are connected to the Switch Box is represented by
several implementations. The only difference in the implementation is the way of address-
ing a switch. A switch can be either associated to a motor or to a mask of the MOS Unit.
Additionally the StateSwitchBoxSwitch class and its descendants can be used to evaluate
the state of a switch directly. Corresponding to the addressing options, different construc-
tors are provided for the states of the Switch Box. The states that utilise the client of
the MCU Service are used to test the limit and reference switches that can be connected
to every stepper motor. The power characteristics as well as the initialisation state of a
motor are reflected by state implementation, too. The initialisation state of a motor is
important to be able to evaluate the position of a motor correctly. In case of a power loss
at the control electronics, the internal position counter is set to zero. Same things happen
if the MCU Service is restarted. The resetting of the hardware at service start is required
to bring the electronics in a predefined state. All changes at the electronics that modify
the internal position counter need to be detected. If modifications are detected further
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absolute motions of an uninitialised motor can be prevented by using the corresponding
initialisation transition and state. Then the absolute position information of a motor can
be used reliably. The parametrisation of states is done in the constructor of the objects.
Therefore the inspection of the states does not require to pass values.

6.1.4 The Execution and Inspection of Sequences

Both, transitions and states are combined to create sequences. The Sequence interface
defines the methods that have to be implemented in all motion sequences. Besides the de-
fault methods of the SequenceElement interface there are four other methods to retrieve
and check the pre- and post-conditions of a motion sequence (see Figure 6.1). The Pre-
ConditionsViolatedException and PostConditionsViolatedException classes define the
exceptions that are used by the check methods. There are additional methods to execute
the sequence and calculate the required execution time. To improve the readability and
debugging of a sequence, methods have to be implemented that manage the history of the
processed sequence elements. All the required methods are implemented by the Sequen-
ceImpl class. As this class extends the SequenceElementImpl class all basic methods are
inherited. Only the calculation of the execution time has to be overwritten. An instance of
the inherited SequenceElementDescriptor class is used to store an object of the extend-
ing SequenceDescriptor class. This allows to store additional description information for
every SequenceImpl object. This information is used to configure the execution behaviour
of a sequence. The default execution is supplemented by the ability to skip sequences. If
skipping is activated the post-condition is evaluated first and if the state is found to be
reached the embedded elements of the sequence are not executed. Directly connected to
this functionality is the ability to disable the mandatory pre-condition checks for composed
sequences. This should not be done for sequences that are basic and contain transitions.
A disabled pre-condition check for basic sequences can damage the instrument. Finally
the SequenceDescriptor entity can be used to declare a sequence as secure. By definition
safe means that a sequence can be executed in any configuration of the instrument be-
cause the used pre- and post-conditions are restrictive enough to ensure safe operation.
For sequences that require parameters for execution the ParametrizedSequence interface
and the corresponding SequenceWithParameterDescriptor class allow to retrieve an ar-
ray of SequenceParameterDescriptor objects. This description of parameters is mainly
used for user interaction. It enables the software to present an appropriate description of
every sequence parameter. Based on the parameter description, the type conformance of
the passed parameters can be checked, too. Another construct to improve user interaction
is defined by the SequenceGroup class. Such a group is used to bundle sequences with
common objectives. Additionally every group can contain sub-groups and therefore realise
a whole tree of sequences. For the MOS Unit the groups are used to organise the sequences
unit-wise.

The abstract SequenceImpl class provides methods to execute a state check, a tran-
sition and a sequence. Those methods manage the whole complexity of execution, includ-
ing the status changes of the currently processed objects that are conform with the Se-
quenceElement interface. If an error during one of these methods occurs a SequenceNot-
CompletedException, a TransitionNotCompletedException or a StateCheckException
object is thrown, respectively. The last exception of the group of classes that inherit their
functionalities from the SequencingException class is the StateNotReachedException
class. This class is used to create exceptions if an additional state check, which is nested
in the sequence execution, fails.
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The processing in the execution methods is controlled via SequenceExecutionHan-
dler objects. This handler is used to pause, step through, resume and stop the execution
of sequences and their included transitions separately. This controlling of the execution
process allows inspection by the engineer. Sequences can be executed stepwise to find me-
chanical problems of opto-mechanical parts. After hardware modifications new parameter
sets can be tested securely, too. Additionally skipping of sequences can be triggered and
pre- and post-conditions can be disabled globally. Another functionality of the Sequence-
ExecutionHandler objects is to provide a gateway to the status of the sequence execution
process including all encapsulated elements. The RMISequenceExecutionListener remote
interface and its RMI implementation are used to connect to a sequence executing ser-
vice, to register at the used handler and to display detailed information to the user (see
Section 7.3).

6.2 The MOS-Unit Service

The use of individually manufactured masks makes a concurrent spectral analysis of several
objects possible. In LUCIFER a total of 33 masks can be stored. 10 of them are fix defined
and contain long-slit masks as well as a blind mask. The most important service of the
Instrument Tier is the MOS Unit Service which controls the hardware that exchanges
these masks. As LUCIFER is a cryogenically cooled instrument a mask replacement would
usually require a warm-up and a cool-down phase in which the instrument could not be
used scientifically. For a dewar of the size of the LUCIFER instrument the required time
can easily extend to one week. In this calculation the required time of un-mounting the
instrument from the telescope is neglected. One big advantage of the design of LUCIFER
is that an auxiliary cryostat can be attached. Two auxiliary cryostats are utilised, one to
remove the old masks and the other to insert the new ones. In the auxiliary cryostat a
cabinet with a maximum of 23 user-defined masks is pre-cooled to avoid an interruption
in the observation schedule. The use of auxiliary cryostats allows to exchange masks on
a weekly basis. Technical details on the MOS Unit hardware can be found in Hofmann
et al. (2004); Buschkamp et al. (2010).

The successful operation of a complex cryogenic mechanism like the MOS Unit highly
depends on its control software. To comply with the requirements the hardware must be
assisted by the software. If a mechanical function can not be solved by a constructional
approach, an intelligent control of sub-components has to realise it. One example for such
an interconnection between the hardware and the software is the spindle that moves the
cabinet between the instrument and an auxiliary cryostat. It is manufactured as two inde-
pendent parts. One in the instrument and another in the auxiliary cryostat. Both elements
have to move synchronously as if they were joint even though a mechanical coupling would
be too complex to realise. Another example is the MHU. The robot arm must precisely
transport the masks between the storage and the FPU. However the limitations of space
confine its mechanical stiffness. Therefore for each orientation of the instrument the correct
placement of the masks can only be guaranteed by the control software.

The class diagram of the MOS Unit Service is presented in Figure 6.3. The functionality
to execute sequences which are based on the sequencing framework is integrated into the
MOS Unit Service by extending the abstract Instrument Service. This abstract service is
used by every service of the Instrument Tier. This enables the engineer to use one common
GUI to control the sequence execution process (see Subsection 6.1.4) for all services that
drive opto-mechanical units. Additionally all common methods to execute and manage
sequences are implemented centrally. This increase the maintainability. The remote access
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to the abstract Instrument Service is defined in the RMIInstrumentService interface.
This interface combines the required methods of the SequenceExecutionHandler and
the SequenceImpl class. In contrast to the methods defined in those elements, only a
SequenceDescriptor object needs to be passed as a parameter. The implementation of
the RMIInstrumentService interface is done in the RMIInstrumentService class. This
implementation keeps a hashtable of all available sequences. Another hashtable is used
to keep track of all running sequences. To improve the presentation of sequences to the
engineer, the root of the sequence tree is stored additionally. Both hashtables are used
by the service implementation to look up the required sequences and to control them.
The RMIInstrumentServiceImpl.secureStop() method does not require any parameters
because this method tries to stop all currently executing sequences of a service. In contrast
to directly dispatching an emergency stop of all motions at the MCU Service, the sequences
are continued until the next state is reached.

Even though the MOS Unit is the most complex part of the instrument its service has
a simple interface that is used by the higher-ranking Instrument Manager. There are four
methods to transport a mask between FPU, turnout position and storage plus additional
two methods to perform a cabinet exchange. The other functionalities of the MOS Unit
Service are just required for status retrieval, engineering access and to administrate the
masks. The remote methods of the MOS Unit Service are defined in the RMIMOSUnit
interface, realised in the RMIMOSUnitImpl class and accessed via the RMIMOSUnit-
Client class. The motion logics that are required to safely move the MOS Unit are realised
as sequences. These sequences are created initially at service start time together with the
states and a single SequenceExecutionHandler object. The parametrisation of the se-
quences and states is done by using the huge configuration set that is provided by the
ConfigMOSUnit. Only a small fraction of all parameters is presented in Figure 6.3. This
configuration contains a separate parameter set for every mask which is required to com-
pensate slight variances in manufacturing and to store meta data. The handler object is
used to control the execution of those sequences that realise the main MOS Unit opera-
tions. The RMIMOSUnitImpl class keeps a direct reference to those six main sequences.
If one of the main methods is called, the handler is used to execute the corresponding
main sequence. The resulting execution tree is stored in the RMIMOSUnitImpl class in
order to be analysed in case of a malfunction. This wrapping of sequence execution into
methods enables the RMIMOSUnitImpl class to change the status of the MOS Unit Ser-
vice accordingly. As the MOSUnitStatus class extends the JournalizerObject class, the
status is transmitted to the Journalizer Service and stored in a database (see Section 5.5).
Important for status tracking is the overwriting of the method that executes a single se-
quence. This method is initially implemented in the abstract Instrument Service class.
Thereby the service is enabled to determine if engineering actions have modified the unit
status. Important for engineering access is the ability to lock the MOS Unit Service and
prevent unwanted usage by others. Only by transmitting the right password, this lock
can be disabled. Another tool for engineering is activated at service start and creates an
EncoderTestThread object that observes the encoder values to detect malfunctions. This
feature was introduced in a phase where encoders started to report motions even though
no active command was issued.

All complexity of moving the MOS Unit is hidden in sequences and states. The resulting
finite state transition networks model the complex motions of the individual parts of this
unit. The sequences of the MOS Unit Service can be divided into two groups. One group
that realises the mask transport in the instrument and the other to exchange the mask
cabinet. The next subsections present the sequences of the controlled subunits in detail.
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6.2.1 The Mask Exchange between the FPU and the Cabinet

The sequences that are required to position a mask in the optical beam of LUCIFER
are presented in Figure 6.4. The corresponding states and their aggregation hierarchy
is shown in Figure 6.5. In the class diagrams of Figure 6.4, Figure 6.5 and Figure 6.6
the <Sequence> and <State> prefix is omitted, respectively. The two main sequences
that realise the mask exchange are composed in the SequenceMaskFromFPUToStorage
and the SequenceMaskFromStorageToFPU class. Both classes are the root of large se-
quence trees. Their direct children model the motion between the end points and the
intermediate turnout position. 6 of the 31 required sequences are used only for engineer-
ing purposes. To initialise the corresponding subunits there are the SequenceFPUInitial-
ize, the SequenceMHUTranslatorInitialize and the SequenceMHUPickerArmsInitialize
classes. Two sequences can be used to open and close the mask grabber manually. The
SequenceMHUTranslatorTest class combines several sequences to automatically test the
successful operation of the MHU translator. To organise the sequences they are grouped
by the part they operate. The sequences of these groups are described next.

The Mask Handling Unit

The MHU is responsible for picking and transporting a mask. It is composed of three
subunits. These are the MHU picker arms, the MHU rotator and the MHU translator.
The sequences of the MHU picker arms are required to securely pick/release a mask. Even
though the required motions are simple, the states that are used as pre- and post-conditions
are very complex. These states have to ensure that the MOS Unit is in a setup to transfer
a mask. As a mask is a free element a release without previous fixing would drop the mask
in the instrument and result in damage. The same problem exists when a mask is grabbed.
If the grabbing fails and the mask is not locked in the picker arms further processing of
sequences would lead to a loss of a mask.

The MHU rotator allows to rotate the MHU picker arms together with a grabbed
mask. To be able to move a mask in LUCIFER the mask has to be rotated into the
transport orientation. The other available orientations are towards the cabinet or the FPU.
In these three orientations the rotator can be locked magnetically. If the motor is powered
off the rotator will keep its orientations permanently. When a grabbed mask is removed
from the storage cabinet it can get jammed. In such a case the implementation of the
SequenceMHURotator StorageToTransport class tries to free the mask automatically:
(i) After detecting a jam the mask is brought back to the cabinet. (ii) The MHU translator
position is slightly modified and a new extraction try is started. (iii) This procedure is
repeated as long as the translator position is within a predefined tolerance area. (iv) If
the automatic extraction procedure is successful the configuration set of the corresponding
mask is modified (see Section 6.2).

The MHU translator moves the MHU in front of the mask cabinet to the positions of the
masks. As this positioning requires high accuracy, the translator needs to be initialised in
advance. As described in Subsection 6.1.3 several transitions and states exist to ensure an
accurate absolute positioning of elements. After a mask is rotated to the transport position
it can be moved between the turnout position and the cabinet. In the turnout position
the translator is locked magnetically to prevent the MHU translator from drifting in case
the motor power is switched off. The same locking has to be done when the translator is
at the FPU or is currently not used. Although the mechanical manufacturing tolerance is
very small absolute positioning is not sufficient enough to activate a lock successfully. An
additional angle correction of the translator spindle is required. To insert a mask in the



107 6.2. MOS UNIT SERVICE

FPU the translator has to place it on centring ball pins. Therefore the MHU translator
has to move towards the FPU after the mask has been rotated from the transport to the
FPU orientation.

Because an accurate interaction is required to prevent a collision, the whole MHU is
as complex as all other units of Section 6.3.

The Mask Retainer

Only a part of the total mask retainer functionality is required to exchange a mask. These
are the ability to select a mask and unlock/lock it. The mask selection is mechanically
realised with a slotted spindle. Therefore the SequenceRetainerSelectMask class has to
operate the stepper motor until a required angle is reached. When a mask in the retainer
is unlocked the selection spindle is not allowed to move. This requirement is modelled in
the corresponding pre-condition. The unlocking/locking of masks itself demands a simple
limited motion of the corresponding stepper motor.

The Focal Plane Unit

The FPU has to keep the masks in the focal plane with high positioning accuracy. This is
mechanically realised with centring ball pins. After a mask has been rotated towards the
FPU and placed by the translator, both arms of the FPU can move to an intermediate
position that ensures that the mask can not get lost. Then the picker arms can release the
mask to prevent stress during alignment. Finally the picker arms can close and press the
mask onto the ball pins. It is important for all motions of both axis of the FPU arms that
they are executed synchronously to prevent a jam. At the same time the tolerance in the
manufacturing of both arms has to be compensated by the 4 FPU sequences.

6.2.2 The Cabinet Exchange between LUCIFER and Auxiliary Cryostat

The replacement of 23 masks without the necessity of warming up the whole instrument
is one of the advantages of LUCIFER. No complications during a cabinet exchange should
occur because the auxiliary cryostat is attached to LUCIFER while it is mounted to the
telescope. If the cabinet is stuck in the middle of the transfer process and can not be recov-
ered to a save state, the instrument needs to be opened. During this warm-up process the
telescope is forced to point to the zenith. The sequences and states that realise the cabinet
exchange are presented in Figure 6.6. 6 of the 20 sequences are required for engineering
tasks. These sequences are either used to initialise the different subunits or to perform
a cabinet exchange in the laboratory without having an auxiliary cryostat attached. The
main motion sequences of the cabinet exchange are represented by the SequenceCabi-
netToLucifer and the SequenceCabinetToAuxCryostat classes. These classes combine
several sequences of the different parts of the MOS Unit to realise a safe transfer. The
sequences of these parts are described next.

The Shield Lock

The shield lock is the simplest unit that takes part in the cabinet exchange procedure.
A hardware switch limited motion is required to open the radiation shield. The only
complexity of this motion is handled by the pre-condition which ensures that the flex-
board that is attached to the MHU translator is out of the critical working area of the
lock.
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The Mask Retainer

The mask retainer is used in a similar way as in the mask exchange sequences. The only
difference in the selection process is, that instead of a single mask all masks are selected
and unlocked. After a successful exchange all masks are locked again. Besides the mask
locking the cabinet locking is part of the retainer structure. Its motion is modelled in
dedicated sequences, too. Most important for the cabinet exchange is the transport of
the mask cabinet. This motion is the critical element of the whole exchange process .
The cabinet translations of both, the instrument and the auxiliary cryostat, have to be
operated synchronously. The motion of the mask cabinet is implemented in the Sequence-
CabinetImport and SequenceCabinetExport class. Both sequences work in the same way
except that the motion direction is reversed. (i) The cabinet is brought stepwise towards
the end of the cabinet translation spindle. (ii) Both translation spindles are aligned with
respect to their orientation. This is required to move the spindles as if they were mechan-
ically joint. (iii) The synchronous motion that realises the transfer between both spindles
is executed stepwise, too. Between the motions steps the absolute angles of both elements
are compared to determine whether the last motion was successful. In this case the export
sequence can be resumed. (iv) After the cabinet is movable by the spindle of the auxiliary
cryostat the motion is continued stepwise until the cabinet is fully inserted.

The Auxiliary Cryostat

Besides the spindle that realises the cabinet motion as described above, the auxiliary
cryostat contains a thermal bridge. This part can be pressed on top of the masks to ensure
a thermal coupling and speed-up the cool-down process. Additionally the thermal bridge
guarantees that the masks stay in position during the handling of the auxiliary cryostat.

6.3 The Other Services

Even though the remaining services of the Instrument Tier are very important for the
optical setup of LUCIFER their implementation is very simple. Due to the constructional
realisation of these units a maximum of two motors is used to create a rotational or
translational motion. Therefore a very limited amount of sequences and states is required
to model the required motions in the services. Both, the Filter Wheel Unit Service and
the Camera Unit Service control a simple rotation of the corresponding opto-mechanical
parts. For the Camera Unit the rotation is limited by two hardware limit switches. The
positioning accuracy of these units is mechanically realised with notches and requires no
additional software compensation. The Grating Unit Service is the most complex element
of the services of this section. It combines two mechanically independent motions. First a
rotation that ends in notches to select different gratings for spectroscopy or a plain mirror
for imaging. The second motion is the tilting of the gratings. As the tilt angle is actively
controlled by the HIRAMO the service just needs to look up the corresponding voltage
value and send it to the electronics. The Detector Focus Unit Service controls the focal
stage on which the detector is mounted. The used stepper motor is controlled by the service
to create a plain translation of the detector along the optical beam. Depending on the used
camera and filters the focus position is adjusted to a predefined value. The Pupil Viewer
Unit Service moves an additional lens into the optical beam. This motion requires the
stepper motor to turn until the required limit is reached. The Compensation Mirror Unit
Service is responsible for adjusting the optical beam and to compensate the gravitational
distortion of the instrument structure. This compensation is realised with two mirrors
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that are mounted on two translational elements each. For this the two stepper motors are
brought to predefined positions that are dependent on the instrument orientation.

Except the services of this section all software of the Instrument Tier was developed
as a part of this thesis.
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The Operation Tier

A
ll services that are required for operat-
ing the LUCIFER instrument are part
of the Operation Tier. There are ded-

icated services to operate and supervise the in-
strument. Other services exist to manage the
interaction with the Telescope and the Readout

Services. The applications for user interaction
and observation preparation are part of this tier,
too. Their graphical client access to the services
is realised via separate GUIs for engineers and
observers.

The Operation Tier combines the services of the lower tiers to use the LUCIFER instru-
ment scientifically. Besides the centralised configuration facility the System Tier contains
the Message Server. Its service is used to inform either the engineer or the observer about
the activities and status of all services (see Section 4.5). During operation this end-user
information is mandatory to notice technical malfunctions and to be able to react ac-
cordingly. The services of the Control Tier provide direct access to the electronics of the
instrument. Therefore a direct engineering access is created with dedicated GUI clients
(see Section 7.3). The most important service of the Control Tier is the Journalizer Ser-
vice which is required to execute observations with high efficiency (see Section 5.5). This
service keeps a log of the current instrument status which is required to change the setup
fast and present it to the user. Thereby the necessity to query all services individually
is avoided. The services of the Instrument Tier are used to setup the individual opto-
mechanical units of LUCIFER. Their current status is reported to the Journalizer Service,
too. A data structure to represent the instrument status was developed together with Jan
Schimmelmann (see Schimmelmann, 2007). This data structure is used in his sched-
uler prototype to setup the instrument with a minimum of required service interactions.
Currently there is no implementation of a Telescope Manager or Readout Manager which
processes binocular telescope commands or readout processes. It makes no sense to use
the scheduler as it is restricted to execute setup changes only. Scientific observations are
limited to a simple text-file based script execution (see Knierim, 2009).

In the following sections the instrument control and the graphical client access is de-
scribed.

7.1 The Services Managing LUCIFER

There are two services that manage the LUCIFER instrument. The Instrument Manager
that combines the functionalities of the services of the Instrument Tier and the Supervisor
that monitors the environmental parameters. As all complexity of controlling the opto-
mechanical parts of LUCIFER is hidden in the services of the Instrument Tier, simple
method calls are combined to build the Instrument Manager. The current workaround
solution of the instrument manager does not use the Journalizer functionality accordingly
and therefore increases the required setup time. Depending on the required optical setup,

113
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the services autonomously execute their tasks and report their status. The current version
of the Instrument Manager in combination with the observation GUI continuously polls
the status of the services either directly or from the Journalizer Service and thus pro-
duces additional workload. The Supervisor has to monitor the environmental parameters
of LUCIFER and has to notify the observer/engineer if limits are exceeded. For this the
Supervisor connects to the corresponding services of the Control Tier (see Section 5.4).
On a regular basis the monitored environmental measurements are retrieved and com-
pared with predefined limits. If the limits are exceeded, new messages are generated and
additionally the user is informed visually.

Apart from the functional description, the development of the Instrument Manager
and the Supervisor was not part of this thesis.

7.2 The Observer‘s Access to the Instrument

To support both observers and engineers in an optimised way, the access to the LUCIFER
instrument is done differently. The access of the observer needs to be restricted to prevent
the instrument from damage caused by misusage. The presented information must be
filtered to an appropriate level. During observation runs, a presentation of the current
status is required. This information must reflect the status of the instrument and the
telescope. Additionally the observer needs to inspect the data taken in the readout process.
In some cases the observer must interactively take appropriate actions. This is e.g., the
case when the MOS masks are positioned on a target and fine adjustments to the telescope
pointing are required.

7.2.1 The Performing of Observations

To be able to reuse the GUI components that are developed for both, engineering and
observation purposes, a hierarchical interface structure was developed. By inheriting this
structure the GUI access is divided into three groups. One to provide basic information,
another for observers and one with full engineering capabilities. This approach was pre-
sented together with Volker Knierim in Knierim et al. (2006). When the observer
wants to take scientific data sets interactively, he must be able to setup the instrument
manually and perform integrations. Therefore he requires access to the Instrument Man-
ager. The GUI client that implements this access has to commit setup changes and present
the current status. A first prototype of an observer GUI is presented in Knierim et al.
(2006), too.

A client access to the readout software GEIRS is needed when integrations should be
performed manually. GEIRS has its own real time display and can be used to control
the readout process. A service that interfaces with GEIRS and a prototype GUI client
is presented in Muhlack (2006). To integrate the SkyCat tool of ESO (see Albrecht
et al., 1997) as an alternative real time display, a script based solution was developed in
this thesis.

7.2.2 The Preparation of Observations

An automated execution of observations is preferred by the scientist. NIR observations
have to be done differently to optical ones to compensate the variable sky emission. This
variability limits the maximum integration time. Typically a series of readouts is combined
to one integration by the readout electronics. With respect to the sky variability and
the used wavelength range, such an integration is limited to several seconds up to a few
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minutes. Depending on the scientific objective it may be required to take exposures at
off-target pointings to measure the sky background. Especially extended targets require
larger telescope offset. By these restrictions a scientific observation could require many
pointings and integrations. It is nearly impossible to perform this manually and achieve
good results.

Another benefit of automated observations is that the user is able to prepare everything
in advance. Well prepared observations increase the scientific outcome, as the instrument
usage can be optimised to reach the required sensitivity. The planning process involves
the scheduling of targets during the night, an efficient rearrangement of instrument setups
and the minimisation of telescope motions. The planning of observations is affected by the
anticipated reduction process of the data sets, too.

In Schimmelmann (2007) a first prototype of an Observation Preparation Tool (OPT)
is presented. This tool covers all important requirements and provides a parameterised
solution for typical observation tasks. It contains pre-implemented code to realise common
telescope motion tasks e.g., to point to the sky or dither around a telescope pointing
with custom patterns. Besides the automated scheduling of observations over the available
nights, the GUI of the OPT visualises important parameters like the airmass, to allow
for a manual planning. The existing prototype is not used for observations yet because of
pending modifications. Instead a text file driven scripting was implemented and has to be
used by the observers (see Knierim, 2009).

7.3 The Engineer‘s Access to the Instrument

In contrast to the observer, the engineer requires full access to both the hardware and the
software. On the software side the status of the services must be monitored. Addition-
ally the engineer must be able to stop and start subsystems of the control software and
modify their configuration parameters. In most cases engineering access to the hardware
is required to solve problems. When an observation is interrupted by an error, appropriate
actions are required to bring the instrument back to operation. During the integration
and commissioning the engineering access was required to improve the performance of the
LUCIFER instrument by optimising the configuration parameters. After each technical
servicing, the mechanical modifications require an adaption of these values, too. Finally
engineering access is required to exchange the cabinet and reconfigure the designations
of the masks. The next subsections present the engineering access to the services of the
different tiers.

7.3.1 The Access to the Services of the System Tier

The System Tier contains all basic services of the LCSP. These are the Configuration
Service, the Time Service and the Message Service (see Chapter 4). As all services of the
LCSP are based on the remote service framework of the System Tier, a unified access is
realised by the Start Manager application (see Section 3.3). This GUI provides all required
service management and configuration functionalities.

The Message Service that centrally processes the incoming data of all LCSP services
and applications stores the messages in an SQL database. The persisted data can be anal-
ysed with the message browser afterwards (see Subsection 3.4.2). To keep track of the
messages a direct access to the Message Service is required instead. This realtime visuali-
sation of messages is done by the Message Panel (see Figure 7.1). The central element of
this panel is a scrollable list of messages. Each message row contains a time stamp, a type
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Figure 7.1: The panel used to display notifications of the services of the selected message
channels.

and a level, localisation data, the message text and additional information. To minimise
the network traffic between the GUI client and the service, the user can specify the level of
messages to receive. This specification can be done individually for the 5 different message
channels. Another filtering functionality is implemented in the Message Panel which eval-
uates a user defined string and reduces the output to matching results. The only difference
between an observer and an engineer usage of the Message Panel is the capability to send
messages manually.

7.3.2 The Access to the Services of the Control Tier

Access to the services of the Control Tier is fundamental to perform engineering tasks.
These services realise the communication with the control electronics and therefore are
required for basic operations (see Chapter 5). Besides the monitoring of environmental
parameters, the full control over the opto-mechanical parts of LUCIFER is available on
this level only.

Figure 7.2: The GUI client of the MCU Service.
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Figure 7.3: The three views of the Switch Box panel. Top: A schematic status display of the
MOS switches that are associated to a motor. Centre: The status of the same
switches in a tabular view. Bottom: The mask switches and access to the strain
gauges.

To control the motion of the optical elements a GUI client to the MCU Service is
required (see Figure 7.2). In a tabbed view the connected motors can be selected and
controlled individually. This includes a manual motion by a specified amount of steps.
Thereby the predicted motion time is presented while the steps are entered. This calcu-
lation is based on a functionality of the MCU Service which uses parts of the simulation
code of LuciferVR (see Chapter 8). During motion a progress bar visualises the remaining
motion time. A display of the used motion parameters is part of the MCU Panel. This
information is required by the engineer to check the configuration. Related to the motion
of a stepper motor is the ability to set the position which is internally managed by the
electronics. Another functionality is the direct change of the speed and the power charac-
teristics. Depending on the configuration of a motor, magnetic locks or encoder data are
available. The magnetic locks can be used to fix the position of an element. The encoder
data provides additional positioning information which is required to compensate steps
that have been lost or to drive to an absolute angle. In the MCU Panel the angle infor-
mation delivered by an encoder is graphically visualised, too. Apart from the individual
controlling of motors, the right side of the panel hosts elements to move several motors
synchronously. For each motor the MCU has the ability to probe several status signals
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Figure 7.4: Sequence selection panel and execution dialogue. Left: The panel that provides
engineering access to the services of the Instrument Tier. Right: The sequence
execution dialogue with its interaction capabilities.

which are shown, too. This information can be used by the engineer to check the status of
hardware switches which are directly connected to a motor.

Another possibility to check the status of switches is realised in the Switch Box Service
(see Subsection 5.2.3). The corresponding GUI access i done with the Switch Box Panel
(see Figure 7.3). This panel combines three views. The first two views show the status
of switches that are associated to a motor. First of all these are the limit and reference
switches. The other switches are for special purposes. The status of a switch is visualised
with colour and text. As the Switch Box Service is able to determine malfunctions, these
errors are displayed, too. In the first view the switches are schematically structured to
support the status recognition process performed by the engineer. The second view presents
the status of the same switches as a table. The last view visualises the status of the mask
switches. In addition to the status display of the mask switches, the strain gauges are
operated by this panel.

The last service of the Control Tier that needs to be accessed for engineering is the
HIRAMO Service. Its GUI client is presented in Knierim (2009)

7.3.3 The Access to the Services of the Instrument Tier

The services of the Instrument Tier combine the functionalities of the Control Tier to
realise complex motion sequences (see Chapter 6). As the generic Instrument Service is
extended by all these services, basic sequencing functionalities can be provided by a uni-
form GUI (see Figure 7.4). The Sequence Panel enables the user to browse the available
sequences and to select them for further processing. When the sequences are grouped ac-
cordingly, the panel presents them in a tree structure. In case the accessed service was
restarted the available list of sequences can be refreshed. After a sequence is selected it
can be executed by the user. If necessary a dialogue window will appear and query the
required parameters. The execution process can be manipulated by using check boxes. The
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Figure 7.5: The dialogue to inspect decision trees.

user can activate a sequencing control on transition level and pause the sequence execu-
tion right after beginning. Additionally the skipping of sequences can be activated. When
a sequence is executed its progress is visualised in a separate dialogue (see Figure 7.4).
This dialogue enables the engineer to stop, to pause, to resume and to step through the
execution on both sequence and transition level. Additionally direct access to the MCU is
used to provide an emergency stop functionality. The realisation details of the sequence
execution and inspection process are described in Subsection 6.1.4. Based on the interfaces
defined there, the remote visualisation of the sequence execution is implemented in this
control dialogue. Each element is represented by a unit name and a task description. The
currently executing sequence element is marked with a green triangle. When a sequence el-
ement has been processed successfully it is marked as checked. Paused elements are printed
in yellow. When an error occurs during execution the corresponding element is marked
with a red cross. In this case more detailed information is presented to the engineer. In
most cases the failure of a sequence element is found by checking a state. The result of
this state check is presented to the engineer, too.

As sequences model the motion as finite state transition networks each sequence has
its specific pre- and post-conditions. The checks of these pre- and post-conditions can be
disabled during sequence execution. On the other side the states can be checked manually
without the necessity of executing a sequence. The corresponding state check dialogue is
shown in Figure 7.5. This dialogue enables the engineer to browse a decision tree. In each
row the required value, the Boolean composition operator, the hardware identification
string and the brief description of a node are printed. Additionally the nodes reflect the
Boolean value of the last status check. A red exclamation mark is used for nodes that do
not match the required value.

For the services of the Instrument Tier specialised GUIs exist. They combine the
Sequence Panel with the panels of the Control Tier to realise an engineering access.
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Figure 7.6: The panel to control the MOS Unit Service.

7.3.4 The MOS Unit GUI

The MOS Unit Service can be directly accessed by an engineering panel (see Figure 7.6).
First of all this panel allows to initialise the MOS Unit by executing the corresponding
sequence of the MHU translator. The 6 main functionalities of the MOS Unit Service (see
Section 6.2) can be used to exchange the cabinet or to operate a selected mask. The cur-
rent status is shown below the buttons that operate the unit. This status is automatically
refreshed. The protocol of the last sequence execution can be accessed, too. It is shown in
the same dialogue as presented in Figure 7.4. When a cabinet has been replaced, the con-
figuration of the currently used masks can be directly changed. The corresponding dialogue
allows to edit the mask identifier, the mask description and the LMS file (see Figure 7.7).
Furthermore a cabinet position can be enabled or disabled and thus be excluded from
normal operation.

7.3.5 The GUIs to Exchange the Mask Cabinet

For the convenience of the engineer the cabinet exchange can be done by a separate
GUI (see Figure 7.8). The cabinet exchange GUI was designed to automatically detect
the current status of the attached auxiliary cryostat and guide the engineers through the
exchange procedure. Step by step the requirements of the cabinet exchange are prepared:

Figure 7.7: The mask configuration dialogue that has to be run after a cabinet exchange.
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Figure 7.8: The panel to perform a cabinet exchange between LUCIFER and an auxiliary
cryostat.

(i) A check of all involved services is done. If one of the required services is not alive,
the engineer is informed to start it. (ii) The electronics are scanned to check whether
an auxiliary cryostat was attached. The hardware identification of this cryostat is used
to automatically select the required configuration data. (iii) The software waits until the
flange has been evacuated and the gates have been opened. (iv) By analysing the current
cabinet status of the MOS Unit, the exchange direction is determined. (v) Before executing
a cabinet exchange the engineer is forced to check the pre-conditions. This check ensures
that all sub-units are initialised and have the required positions. If this check fails the
engineer is informed which actions are mandatory to continue. (vi) Finally the exchange
is performed and its process is visualised.

A 2-button control of the whole exchange procedure is realised by implementing an
automatic probing and a matched processing of the required tasks.
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88
LuciferVR

L
uciferVR is a virtually realised instance
of the LUCIFER instrument. It was built
to allow improved pre-integration soft-

ware tests, to train observers and to provide edu-
cational access. Therefore the hardware interac-
tion with the real instrument is simulated. This

chapter describes the simulation framework that
is used to model the LUCIFER hardware. The
framework is flexible and extendable to other ap-
plications. Further the integration of the simula-
tor into the control software as well as its visu-
alisation components are presented.

When developing software the time to test the software is often insufficient. Especially
when developing a control software that interacts with external hardware a discrepancy in
available and required test time can be discovered. The tests of the communication with
the electronics and the software interaction with movable elements demand the presence of
a correctly working hardware. Tests cannot start until hardware development is finished.
Nonetheless in many projects everyone expects a fully functional control software at the
moment of hardware completion. The physical tests of the hardware1 and the likewise tests
of the software-hardware interaction are often regarded contrarily. Of course software can
be created in parallel to the hardware but the tests of the integrated system are still
mandatory and the required time needs to be covered by the project schedules. To get out
of this time dilemma in the LUCIFER project and to reduce the needed post-integration
test time a virtual instrument was built.

LuciferVR is the virtual counterpart of the real LUCIFER instrument. A first prototype
of the virtual instrument was presented in Polsterer (2003). This first prototype was
completely re-developed and published in Polsterer et al. (2006). The primary reason
to build a simulator is to create a test environment for the control software. On one side
each unit of the software is functionally tested and regression tests ensure that changes to a
module do not unintentionally interfere with other units. On the other side the integrated
software system and its hardware interaction is tested (compare Section 2.1.3). A virtual
instrument closes the gap between the regression tests and testing the control software with
the integrated instrument. Therefore LuciferVR reduced the amount of time necessary to
adopt the software to the real hardware.

By modelling the instrument in a simulator the motion times can be calculated. This
motion time calculation is integrated into the MCU to offer exact time-out calculation for
the motion commands. Another benefit is that the positions of all instrument units can be
traced. Especially when using complex mechanisms like a MOS Unit a virtual instrument
makes software development less time consuming. LuciferVR was used to test the motion
logics in a pre-integration phase of the instrument and helped to reveal fundamental er-
rors in an early stage of the software development process. Of course the detailedness of
the simulator defines the grade of accuracy reached during tests. The simulation of the

1E.g., by using a telescope simulator to test instrument characteristics for different orientations.
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LUCIFER instrument is specialised on the interfaces between the software and the hard-
ware. The aspects of the physical motion of the opto-mechanical parts are incorporated in
LuciferVR. Randomly generated motion errors are used to increase the robustness of the
control software. Furthermore the torque and the speed of the stepper motors can produce
simulated variance in expected and actual element positions. Other physical factors like
the optical path and errors that occur e.g., by reason of instrument bending or element
collisions are currently not simulated.

The testing is not necessarily limited on the tests done for software creation. The
simulator is still used to maintain and create new logics. E.g., in December 2009 LuciferVR
was utilised to write a completely new cabinet exchange mechanism. This new functionality
was successfully executed in the cooled down instrument without the possibility to do a
test run on the real instrument in advance. A failure during this exchange of the MOS
masks would have implied a downtime to the whole telescope of at least 4 days.

Since LuciferVR simulates the instrument hardware the communication with the read-
out and telescope control software was tested differently. For readout tests a hardware
that used simulators instead of AD-Cs was provided by the MPIA (see Section 3.4.3). The
control software GEIRS additionally contains an integrated test mode that allows to run
the software even without the readout electronics. To test the communication with the
telescope the complete TCS needs to be installed. Once a TCS instance is running the IIF
can be used to issue commands. A real simulator of the telescope does not exist however
it is planned by the LBT software group to build one. Therefore this way of interaction
allows to test the interface to the TCS only.

Besides using LuciferVR for software tests observers can be trained on the simulator.
Technicians have been trained to perform a cabinet exchange without moving parts of the
real instrument. This way of training allows to repeatedly operate a procedure without
mechanically stressing the hardware so that the observers or technicians can gain expe-
rience. For future use of LuciferVR it is anticipated to have a virtual instance on-line in
order to grant training access to observers. This will improve the efficiency of observations
because logical errors in their observation runs can be figured out in advance. Additionally
the observer will be made familiar with the GUIs.

Finally an on-line version of the virtual instrument could be used to provide educational
access. By embedding the Astrophysical Virtual Observatory (AVO) imaging data could be
created. In this case the influences of the instrument on the data would not be considered
and only already reduced images could be returned. Noise, sky, filter transmission curves,
dispersion and other artifacts would be neglected. Data for the spectroscopic mode would
not be available. Thus a pre-recorded observation could be replayed to demonstrate the
operation mode of LUCIFER. The virtually retrieved data could then be used to exercise
the data reduction process on raw data including an astrophysical analysis.

8.1 The Simulation Framework

The simulation framework represents the central element of the virtual instrument. It is
fundamental to use the control software stand alone. When designing this framework the
prototype as described in Polsterer (2003) was discarded and a more flexible and ex-
tendable solution was created. A part of the simulation framework is dedicated to the
generation of random numbers. These random numbers are important e.g., to add errors
to the motion simulations and to prevent the RMITimeGeneratorImpl from generating
numerical artifacts. The available random number distributions are based on the number
generator of Java. Besides the NormalDistribution and the UniformDistribution com-
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Figure 8.1: Class diagram of the simulation framework. On the right-hand side of the diagram
the classes and interfaces are placed that define the simulator core while the left-
hand side is split into:
GREEN : event scheduling and model-to-system time concatenation,
YELLOW : modification of simulation functions,
RED : observation of simulation functions.



CHAPTER 8. LUCIFERVR 126

posed distributions are implemented e.g., in ExponentialDistribution and PoissonDistri-
bution.

The structure of the simulation framework is presented in Figure 8.1. Besides the sim-
ulator core the simulation.simulator package can be coarsely divided in 3 sub-domains.
One for managing time events, one for modifying simulation functions and one for ob-
serving the simulation. The simulation framework is embedded in a distributed envi-
ronment that provides remote access to observe and modify a simulation. All 6 inter-
faces starting with <RMI> in their name extend the RemoteObject interface and all 5
classes that end on <Impl> extend the RemoteObjectImpl class, both a member of the
de.rub.astro.util.net package. This is done to incorporate basic LCSP remote method
invocation capabilities.

By distinguishing between observers and modifiers, the behaviour of a simulated el-
ement is modelled. The main function of the SimulatorImpl is to manage the Simula-
torTask objects that are generated by the concrete implementations e.g., of the stepper
motors. When the current value that is simulated is polled the simulator processes the
queue of tasks up to the current model time that is taken from the central RMITimeGen-
eratorImpl instance. This processing is done by solving the mathematical function that
is included in every task. The observers and modifiers that are registered to a simulator
will automatically be informed about new tasks. New tasks are first passed to the con-
nected modifiers in the order they have been registered. After the modification the tasks
are sent to the registered observers. To allow these modifications and observations remote
callable implementations of the Observable and Modifiable interfaces are connected to the
simulator. These implementations manage the registered RMIObserverImpl and RMI-
ModifierImpl objects in a list, respectively. New objects can be added to these lists and
older ones removed accordingly. RMIModifierImpl objects can fold the function that is
embedded in a SimulatorTask with other functions. This is useful e.g., to add noise to a
simulated motion or to cancel motions in case of reached limits. RMIObserverImpl ob-
jects are used to track the state of the simulation. An Observer conform object analyses a
simulation function and can determine if a given value is reached. In this case the Observer
can trigger the creation of an event in order to react appropriately. E.g., if the simulated
position reaches the limits of the activation range of a switch an action event is scheduled
at the pre-calculated simulation time. Moreover the implementation of Observer conform
objects is outstandingly powerful to visualise and display the status of a simulation. Due
to the system design these objects are native probes to the simulation core.

The event-based part of the simulation is realised by the RMITimeGeneratorImpl
class which is responsible for scheduling the events. New events are created by the observers
and sent to the time generator. Therefore this service contains a queue sorted by the model
time. A real time simulation is achieved by linking the real system time to the model time.
The RMITimeGeneratorImpl contains functions to modify the coupling factor between
the real and the model time in order to run the virtual instrument e.g., in slow motion.

In this flexible framework everything that can be described at least as a function of
time can be simulated. When a RMIModifierImpl object additionally implements the
Observer interface to monitor other simulators multidimensional functions can be used
to simulate complex mechanisms. In the next section these compositions of observers and
modifiers and the modelling of LuciferVR are explained.



127 8.2. VIRTUAL INSTRUMENT

8.2 The Virtual Instrument

As already mentioned LuciferVR is a simulation of the LUCIFER instrument. There-
fore the interaction with the motion controlling electronics is reproduced. To emulate all
electronics interfaces the environment mapping monitors need to be covered, too. In the
first prototype the hardware had been simulated and the corresponding commands and
responses were emulated centrally in a single application (compare Polsterer et al.,
2006). A value storage functionality was implemented to generate environmental values
and to record the state of each monitor. This means that e.g., all parameters that have
been sent to a monitor and might be queried later have to be stored. The value storage
also provided the functionality of generating random numbers that correspond to speci-
fied distribution functions. Several random distributions have been available and could be
used to describe e.g., the thermal behaviour of an element in connection with the current
simulation time.

As it turned out later the implementation of the simulation capabilities in the envi-
ronment observing/controlling services was too time-consuming and the emulation of the
command interface prevented a parallel use of LuciferVR and the real hardware. Addi-
tionally the interface emulation based on a socket connection is more complicated and
requires an internal system knowledge of each device to reproduce its temporal charac-
teristics. Therefore the integration strategy of the virtual instrument into the LCSP was
changed (see Section 8.3). The simulation of environmental parameters is not implemented
yet in the services even though the interfaces and data structures already exist. Thanks to
the central position of the Journalizer it is easy to run the system without the environment
monitoring and controlling services.

To realise a modelling of the mechanical parts the simulation.mechanics package
contains generic implementations of hardware simulators. Most important for the simula-
tion of motion is the MotionFunction class. This class implements the SimulationFunc-
tion interface that was introduced in Section 8.1 to describe motion as a function of time.
The used Newtonian position description allows to specify start position, start velocity,
acceleration and jerk. As demanded by the SimulationFunction interface the first three
derivations of the motion function are implemented as well. This enables the simulator and
all connected modifiers/observers to calculate the position, speed, acceleration and jerk for
any simulation time within the specified function limits. The DisturbedMotionFunction
inherits all functionalities from the MotionFunction class and injects additional noise to
the motion. This noise is specified by one of the provided random distributions. To model
a moving element these simulation functions need to be appropriately created and added
to a simulator.

In LuciferVR their is a distinction between the mechanical and the electronical po-
sition of an element. The mechanical position represents the real position of a hardware
element while the electronical position is the expected position based on the calculation
of the virtually created motor impulses. E.g., if a motor is stuck the element won’t move
physically whereas the internal position counter of the electronics continues to count. This
discrepancy between real and expected motion needs to be modelled as well. Therefore
each moving element of the virtual instrument consists of two simulators. One to simulate
the physical motion of the element and the other to simulate the electronics behaviour.
Both are necessary to create responses equivalent to those created by the real instrument.
These simulators influence each other in that sense that both execute similar and inter-
related simulation tasks. Depending on the added modifiers the simulator of the physical
motion can be stopped while the simulator of the expected position is still running. This
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Figure 8.2: Comparison of the linear, trapezoid and s-curve motion profiles of a stepper motor.

will happen when e.g., the element stops because the torque is out of limits. On the other
hand a limit switch which is modelled as an observer and is added to the physical simulator
can stop both simulators.

Fundamental for motion simulation is the RMIMotorImpl class. This abstract class
contains basic methods to manage two simulators. This includes observer administration,
simulation function adding and starting/stopping of the simulators. The RMIStepping-
MotorImpl class is based on this abstract motor. This class is responsible to model the
motion behaviour of a stepper motor. For a specified motion profile and a passed set of
parameters the corresponding simulation functions are created and transferred to the sim-
ulators. E.g., an s-curve profile is realised by creating 7 simulation functions. The middle
one is a simple plateau phase with no variance in speed while the first and last 3 functions
are used for an acceleration and deceleration phase. These phases, in turn, are divided into
functions with increasing, linear and decreasing acceleration/deceleration (see Figure 8.2).
The implementation of a stepping motor is also used by the MCU to precisely calculate
motion timeouts (see Section 5.2.2). To build a virtual instrument all simulators of the ele-
ments must use the same time generator. This is mandatory to synchronise the individual
simulators. In contrast to the motors that create simulation functions the RMIMotion-
Limit class is used to stop the motion if a limit is reached by manipulating the simulation
functions. These motion limits are realised as modifiers that are added to the simulator of
the physical motion.

Besides the generic modelling elements presented above LUCIFER specific character-
istics must be considered. Some of the motors of the LUCIFER instrument are equipped
with angular resolvers or position encoders. To reproduce these position tracing capabili-
ties in LuciferVR the simulator of the physical element position needs to be coupled with
the electronics simulator. Depending on the type of used encoder the absolute angle or the
incremental position of an element can be generated. For a correct incremental positioning
the virtual electronics must be synchronised with the virtual hardware. This procedure
performs identically to the behaviour of the real instrument hardware/electronics.

The motions within the LUCIFER instrument are not necessarily restricted to those
motions evoked by a motor. Besides the motors the RMINotchImpl class can be used
to generate motions. If a simulation function is finished within the limits of a notch and
the motor is not energised a new motion is created to simulate the latching. Even though
this implementation of a notch was designed to emulate hardware characteristics it can be
used to simulated free motions of elements in case of disabled motor current.

In LuciferVR the stepper motor implementations can be equipped with switches. In
the real instrument these switches are used to retrieve positioning information or limit the
operating range of an opto-mechanical part. The RMILimitSwitchImpl and the RMIPo-
sitionSwitchImpl class are implementations of the Switch interface. These switch classes
reproduce the behaviour of their physical counterparts. The RMILimitSwitchImpl is
both an Observer and a TimeObserver. By observing a simulator of a physical element
the moment a switch will be reached can be pre-calculated. This moment is then used
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Listing 8.1: RMILuciferVRImpl.java, line 277 et seq. (Java Source File)

277 motorAddress = new MotorAddress (3,1); // 3,1 grating selection , 200 steps/rev

278 motor = new RMISteppingMotorImpl( this .timeGenerator);
279 limitSwitch = new RMILimitSwitchImpl( this ,LUCIFER_ELECTRONICS ,motor ,

motorAddress ,-0.1, fa l se );

281 limitSwitch = new RMILimitSwitchImpl( this ,LUCIFER_ELECTRONICS ,motor ,
motorAddress ,3.85, true);

283 new RMINotchImpl( this ,LUCIFER_ELECTRONICS ,motor ,motorAddress ,
0.0 ,0.001 , -0.1 ,0.1 , false ,1.0);

289 getElectronics(LUCIFER_ELECTRONICS).setSwitch(2,new RMIPositionSwitchImpl(

motor ,motorAddress ,new double[][]{{3.75 ,0.02}}));
290 motor.setAngle(Motor.ACTUAL_ANGLE ,0);

291 getElectronics(LUCIFER_ELECTRONICS).getStepperMotors ().put(motorAddress ,motor);

to schedule a TimeEvent at the TimeGenerator. When the model time of an event is
reached the corresponding TimeObserver is informed by remotely calling the TimeOb-
server.processTimeEvent() method. In case of a RMILimitSwitchImpl this call is used to
stop the corresponding simulators. Special about the implementation of the RMIPosition-
SwitchImpl class is that it allows to observe the simulated position of a physical element
in a cyclic way. This is useful for modelling elements that can freely turn and for this
reason can reach positions periodically.

Another feature of the LUCIFER instrument is to use magnetically activated locks
to prevent elements from moving. This fixing mechanisms are equipped with switches in
order to display their current status. To emulate these magnetic locks the MagnetLock
and MagnetSwitch classes exist. An activated lock prevents the physical simulator from
moving. As for the real hardware this may lead to an increasing discrepancy between the
electronics counter and the positions of the element.

In Listing 8.1 the creation of the Grating Unit as a simulated element is described. In
line 277 the motor address is created. Here the numbers <3,1> equal the address of the
motor at the real control electronics. This address object is used to identify the element
at the virtual instrument. Next a new instance of a RMISteppingMotorImpl is created.
As mentioned above the unique time generator is assigned to this object. After the motor
with the two simulators is created 2 limit switch objects are instanced. The constructor of
these objects automatically registers the limit switches to the corresponding simulators of
the specified motor. Note that the position of the limit switch is specified in revolutions
of the element instead of steps of the motor. These two switch objects are stored later in
the virtual instrument and can used for switch status queries by the services of the control
electronics. In case of the Grating Unit 4 notches exist to perform a repeatable selection
of the gratings/mirror. In line 283 one of these notches is created. Besides the motor
association the centre, the size, the lower and the upper limit are specified. Additionally
this notch is declared to be non-cyclic. The last parameter is used to set the transmission
ratio between the motor and the element. This value is required to create the simulation
functions correctly for elements that use a gear between the motor and the element. As for
the limit switches the values of a notch are specified in revolutions of the motor. Finally
a position switch is assigned to the motor and is stored together with the motor at the
corresponding electronics instance. The different electronics instances are necessary to
emulate the existence of two autonomous control electronics for both the MOS hardware
and the other instrument units.

In comparison to the other instrument units it is more complicated to model the MOS
Unit in LuciferVR because the masks are freely movable elements with no restriction in
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Listing 8.2: RMILuciferVRImpl.java, line 522 et seq. (Java Source File)

522 new RMIMaskGrabWatcher(clampY ,-7, false , new RMIComposedSwitchImpl(new Switch []{

523 new MaskInGrabberSwitch( this ), // mask in grabber

524 new RMIPositionSwitchImpl(rotator ,rotatorAddress ,new double[][]
{{19.4222222 ,0.01}}) , // rotator at fpu

525 new RMIPositionSwitchImpl(translator ,translatorAddress ,new double[][]
{{ -11.8 ,0.01}}) // translator at hold

526 })) {public void processGrab () {setMaskInFPU(true); }

527 };

location. However their current positions affect the status of several hardware switches.
E.g., the presence of a mask in the cabinet is inspected with a dedicated hardware switch.
For that reason the MaskInCabinetSwitch, MaskInFPUSwitch and MaskInGrabber-
Switch can be used to test whether a mask is present in a simulated element. RMICom-
posedSwitchImpl objects can be used to bundle position, limit, magnet and mask switches
to create new composed states. This is inevitable to reproduce the switches that are in-
fluenced by the positions of the masks. A mask can either be in the grabber, the cabinet
or the focal plane of the instrument. If a mask is lost this would cause serious problems
in LuciferVR as well as in the real LUCIFER instrument. To process the grabbing and
releasing of a mask the abstract RMIMaskGrabWatcher and RMIMaskReleaseWatcher
class can be concretised. These watchers use a composed state to determine a transition of
a mask status. In Listing 8.2 the RMIMaskGrabWatcher of the FPU y-clamp is presented
exemplarily. It is specified that a position of -7 revolutions must be negatively exceeded by
the y-clamp to activate the watcher. In addition a composed switch is used to ensure that a
mask is in the grabber, the rotator is pointed towards the FPU and the translator is at the
hold position. If all these criteria are fulfilled the RMIMaskGrabWatcher.processGrab()
method is called. The implementation in Listing 8.2 calls an internal method of LuciferVR
in order to change the virtual mask status of the instrument. This new mask status will
then affect all queries of switches that depend on a mask in the FPU.

8.3 Integration into the Control Software

The simulation was projected to cover both the hardware of the instrument and the moni-
toring devices. LuciferVR was planned to be a separately running simulation that emulates
the command interfaces of the used electronics (compare Polsterer et al., 2006). For
this reason the first prototype used the parser of the MCU (compare Section 5.2.2) to han-
dle the bidirectional communication between the electronics services and the simulator.
This first approach of integration even allowed tests of the controlling software services
itself. The provided test electronics was equipped with just one stepper motor. Therefore
the simulation was the only solution to verify the correct handling and the synchronisation
of simultaneously executed commands by the MCU Service. Especially thread synchroni-
sation bugs could be fixed before using the real instrument.

The intended way of emulating the firmware of the controllers was found inappropriate.
Changes to a firmware enforced modifications both to the controlling services and to the
firmware emulation of the virtual instrument. The applied flexible two-way parser was
capable of translating command and response symbols in both directions. Even though
the flexible parser was used for the firmware emulation the internal processing of command
sequences had to be reproduced, too.

Instead of running the virtual instrument as a stand alone version in the final reali-
sation it is hard-wired with the services. To integrate LuciferVR in the control software
a direct connection is created between the simulation and the services that access the
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control electronics. Therefore probes are implemented in the controlling services for the
communication with the virtual instrument. These probes directly call remote methods
of the LuciferVR Service. This service provides all methods to interact with the virtual
instrument. E.g., it issues motion commands that are passed to the appropriate simulators
or calculates the status of a specified switch.

The HIRAMO controlling service, the switch electronics service of the MOS Unit and
the service that interacts with the motion control electronics have been modified to use
LuciferVR. By activating the probes via the -use lucifer vr command line argument
the connection to the virtual instrument is enabled. Thereby the communication layer
between the service and the emulated control electronics is bypassed. This way of inter-
service communication minimises the complexity to administrate parameters, to parse
commands/generate responses and to emulate the behaviour of the firmware. When ne-
glecting the command transmission time of the real electronics LuciferVR reacts within
milliseconds identically to the real hardware. Another benefit of this kind of integration
is that it allows to split the commands. This means that commands that are sent to the
real instrument hardware can be sent to virtual instrument as well. Thus LuciferVR can
run synchronously in order to track the state of the instrument. In the next version of
LuciferVR it is planned to implement a status synchronisation mechanism that uses the
information of the hardware switches to adjust the position of the simulated elements.
This comparison of target and actual positions will be helpful for troubleshooting in case
of an error.

To run the control software without the real control electronics the -simulate com-
mand line argument must be specified (compare Appendix B). This enables the evaluation
of simulator generated responses. Once activated the user can not distinguish whether a
service is communicating with the real electronics or with its virtual counterpart. Instead
of waiting for a controller response that is created when a motion is finished the service
waits for the simulator to stop its motion. The potential of Java to handle exceptions
simplifies the interaction with LuciferVR. In the first version that used a full emulation of
the firmware an activated limit switch caused a simulated motion to end and generated a
corresponding response string. In the current version of LuciferVR a reached limit switch
stops the simulation and the method that started the motion throws a limit-reached ex-
ception. This exception is handled by the control service directly. For a parameter query
the currently used parameters can be returned without sending a command and analysing
the response string. Only the provided functionalities of the services of the Control Tier
can be used. Thus these services ensure a full transparent use of both the real hardware
and the virtual instrument.

8.4 Visualising a Virtual Instrument

Even though most of the time was spent to create the simulation framework and to model
the instrument LuciferVR has an outstanding visualisation mechanism, too. LuciferVR
uses Java3D to display the status of the simulated instrument in three dimensions. The
3D representation of LuciferVR can be turned, translated and zoomed to change the view.
For a future version it is intended to have the option of automatically moving and zooming
to an active element. Before the parts of the LUCIFER instrument could be visualised
the CAD drawings were pre-processed. First the CAD data was converted into a format
supported by Java3D to build a scene graph. Next for all parts of the LUCIFER instrument
the number of polygons was reduced by 90%. This was required for a fast reacting display.
Figure 8.3 compares the raw CAD model with the compressed version and demonstrates



CHAPTER 8. LUCIFERVR 132

Figure 8.3: Comparison of the unprocessed 3D-model (left) with the reduced version (middle)
and a photo of the assembled unit (right).

the similarity between a real unit and its simulated visualisation. To increase the clarity of
the display the cryostat is omitted, the inner structure is set transparent and the individual
units are painted in different colours (see Figure 8.4).

In order to show the motion of a component the display registers to the simulators
of the motors which drive the elements of the instrument. The computational load to do
the visualisation is distributed because the current position of an element is not necessar-
ily calculated within the virtual instrument. The visualisation of elements is realised as

Figure 8.4: 3D representation of LuciferVR. Overlay plots visualise the speed of the moving
elements (upper-left corner). The connection status of the visualisation panel is
indicated (lower-left corner) and can be changed (nearby button).



133 8.4. VISUALISATION

Observer conform objects. Therefore each visualisation object is notified of new simula-
tion tasks, value changes and stops of the simulator (compare Section 8.1). The included
simulation function of a task is utilised to calculate the position, speed and acceleration
of an element locally. By describing the translation and rotation of a moveable part as a
function of the simulated motor position the three dimensional motion is modelled. The
same information is additionally used for the overlay display of the motor speed (see Figure
8.4).

The visualisation capabilities of LuciferVR enables the engineer to understand what is
going on in the LUCIFER cryostat and to track the instrument status in a reduced and
human friendly way. Without having the 3D display the engineer would have to gather the
instrument status information from the more detailed engineering panels. Another advan-
tage of the 3D display is that an observer will be able to see the instruments mechanics
working. This is much more intuitive than looking at a progress bar. Additionally the
observer will be able to use the instrument control software prior to an observation visit.
This improves the familiarity with the GUIs and reduces the amount of logical errors in
the prepared observation runs. Therefore it increases the scientific gain of the LUCIFER
instrument.



CHAPTER 8. LUCIFERVR 134



Part III

Science with LUCIFER

135





C
h
a
p
t
e
r

99
NIR Observations of NGC 1156

T
his chapter presents Ks and narrow
band H2 images of the dwarf galaxy
NGC 1156 taken by the LUCIFER in-

strument. After the data set is described the ap-
plied data reduction steps are shown as well as
the required special treatment of this observation.

Finally the results of the analysis are discussed.
A new distance measurement of the galaxy was
done and a first direct detection of structured
warm molecular hydrogen in the outer parts of
a dwarf galaxy is presented.

NGC 1156 is a bright irregular dwarf galaxy similar to the Large Magellanic Cloud (LMC).
It is located in the Aries constellation and shows a global starburst. In the Third Refer-
ence Catalogue of Bright Galaxies (RC3) (de Vaucouleurs et al., 1991) this galaxy is
classified as Magellanic with a total B band magnitude of 12.32 mag and a size of 3.′31 are
specified for this galaxy. This size perfectly fits in the FOV of LUCIFER. Karachent-
sev et al. (1996) determined a distance of 7.8 Mpc by using photometry of the three
brightest red and blue stars. NGC 1156 is one of the most isolated galaxies in the local
universe with no visual companion within 10◦. (Karachentseva, 1973). 21-cm (neutral
hydrogen) observations of NGC 1156 with the Arecibo telescope show an undisturbed HI
distribution and a small dwarf companion at 35′which is equivalent to 80 kpc in projection
(Minchin et al., 2010).

9.1 The Data Set of NGC1156

On November 10th, 2010 the dwarf galaxy NGC 1156 was observed with the LUCIFER
instrument and its N 3.75-Camera1. During this observation the broadband Ks filter2 and
the narrowband H2 filter3 were used. As readout strategy the double correlated readout
mode was chosen. In this mode the detector is initially reset before a first readout. To
create the final frame the data of this first readout is combined with the data of a second
readout which is executed after the specified integration time. In each frame a Number
of Detector Integrations (NDIT) with a specified Detector Integration Time (DIT) are
combined. The resulting data set is presented in Table 9.1. Each of these ≈ 300 files has
a size of 16 MB.

The data set consists of frames for data reduction and science frames. The data re-
duction subset contains dark frames and flat fields. The former frames are required to
compensate the dark current of the NIR array. The latter ones compensates the differen-
tial detector sensitivity, instrumental transmission and vignetting characteristics as well

1The N 3.75-Camera has a FOV of 4′×4′ and a corresponding pixel scale of 0.′′12/pixel.
2The Kshort (Ks) filter has a central wavelength of 2.163µm, a FWHM of 0.270µm and an average
transmission rate of 86.8%.

3The H2 filter has a central wavelength of 2.124µm, a FWHM of 0.023µm and an average transmission
rate of 84.9%.

137
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Purpose Type Filter NDIT × DIT Files
Ks 12× 5 s. 15Science Object Frame
H2 3× 20 s. 60
Ks 12× 5 s. 5Sky Frame
H2 3× 20 s. 20

12× 5 s. 10
Calibration and 3× 20 s. 10
Data Reduction

Dark Frame Blind
1× 2 s. 11
1× 3 s. 10

Ks 1× 2 s. 94Flat Field
H2 1× 3 s. 63

Table 9.1: The LUCIFER data set of galaxy NGC 1156 which consists of 298 FITS files.

as illumination effects that are produced by the telescope. Additionally sky frames have
been taken which are required to compensate the sky emission. Besides the data files which
are required for processing the raw data, 75 science observations exist with an observa-
tion time of 75 minutes. 25 minutes of the total observation time of 100 minutes is used
to compensate for the fluctuations in sky emission. In total the galaxy NGC 1156 was
observed 15 minutes in Ks and 60 minutes in H2. From the first scientific exposure to
the last it took 156 minutes to obtain the data. The overhead of 56 minutes is related to
telescope interactions, changes to the instrument setup, file storage and observation script
processing.

The observation layout was intended to have three main pointings on the galaxy and
one off pointing on the sky. Unfortunately the dithering around these pointings did not
work because of script execution problems. Therefore the resulting science data set has
been created with two pointings on the object and only one pointing on the sky without
any dithering in position. This limitation in different pointings requires a special treatment
of the data set (see Subsection 9.2.2).

9.2 The Reduction of the NIR Data Set

In contrast to standard observations in the optical the reduction of a NIR data set requires
special treatment. A single scientific raw frame does not necessarily show the scientific
target (see Figure 9.1 top left). The target is hidden by the disturbing effects of the in-
strument, the telescope and the emission of the sky. The applied data reduction steps are
presented in the following.

9.2.1 The Standard Processing Steps

The presented data reduction steps have been executed by using the Munich Image Data
Analysis System (MIDAS) (Banse et al., 1983) of ESO. This software package provides
all required functionalities to process data frames. To improve the data processing all steps
of the data reduction of NGC 1156 have been scripted and were executed automatically.
When user interaction was required the retrieved information was stored in tables to allow
for a faster reprocessing, if required.

All frames are affected by a detector element specific dark current which is time de-
pendent. A dark frame is required to compensate for this effect. Such a frame is taken by
blocking the optical beam with blind filters and a blind mask. It is important to create the
dark frames with the same detector readout strategy and integration time as the science
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Figure 9.1: A sample of the different types of frames which are combined to a scientific image.
A raw exposure of 1 minute of the galaxy NGC 1156 in the Ks band (top left).
The corresponding master flat field which has been processed and normalised
(top right). A sky frame in the Ks band which has been used for sky reduction
(bottom left). The final image created by combining 15 processed raw frames
(bottom right). All frames are presented with an inverted grey scale plot.

observations. In a first step these dark frames are grouped by integration time and com-
bined per time block by using the median value of each pixel. Then the resulting master
darks are subtracted from all frames.

In the next step the influence of the pixel dependent detector sensitivity, the illumi-
nation and the vignetting characteristics are compensated. For this reason so called flat
fields are required. A flat field is an observation of a homogeneously illuminated area. This
observation allows to determine the efficiency of each pixel with respect to detector, opti-
cal elements and telescope. For the presented data set the flat fields have been created by
observing the sky at twilight in both filters. Each flat field was automatically analysed and
a map was created which contains the pixels with values that deviate more than 3σ from
the mean value of the frame. This map is then used to replace the values of these pixels
by linearly interpolating over the values of their neighbours. In each filter, a master flat
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was created by averaging over the available flat fields. The highest 15 and lowest 15 values
of each pixel have been excluded from this calculation. Finally the master flats have been
normalised to 1. The master flat of Ks is presented in Figure 9.1, top right. All science
frames are divided by the corresponding master flats to create homogeneous and flat data
frames.

The observation strategy which was used to compensate the fluctuation in sky emission
directly affects the processing of the data. After 3 observations on the target the telescope
was pointed to a sky position and a sky frame was acquired. The sky frames which enclose
a target block are averaged to retrieve a mean sky frame (see Figure 9.1 bottom left). For
each of the observed target blocks a separate sky frame is required. These sky frames are
used to subtract the interfering sky and telescope emission.

As the final step the flux of all science frames was normalised to counts per second,
the frames have been aligned and co-added to a single Ks and H2 image (see Figure 9.1
bottom right). The process of aligning the images is the only step where user interaction
was required. Coarsely selected stars are used to match the individual frames in position,
rotation and scale.

9.2.2 Problems with the Data Set / Special Data Processing

Due to problems during script execution no dithering was applied to the telescope point-
ings. Additionally the pointing for the sky frames was half on the scientific target. This
leads to a contamination of the sky frame with extended diffuse emission of the galaxy.
Therefore the described standard data processing steps produced a science image with
a sloped background. This leads to errors in the photometric analysis. Additionally the
stars which appear in the sky frames can not be removed accordingly, as only data for
one pointing exists. To improve the quality of the sky frames and remove the mentioned
artefacts, special processing steps have been performed. These steps make use of the sky
information which is contained in the science frames of the target, too. The advanced sky
frame processing steps are: (i) The sky frames which directly have been taken in advance
and after a block of science frames where combined with an average composition, as in
the standard processing. (ii) A copy of the enclosed science frames is created and the flux
level of their background is adjusted to the same value as of the averaged sky frame. (iii)
For each pixel the minimum value of the averaged sky frame and the adjusted science
frames is used to create a cleaned sky frame with a minimum of contamination by stars
and extended emission of the galaxy. The result of the improved sky frame processing is
presented in Figure 9.2.

Detailed analysis of residual images between a standard sky and an advanced sky
revealed artificially added faint structures which are remnants of the galaxy emission in
the sky frame. These remnants could lead to false detections in the narrowband analysis.
Therefore the narrowband analysis was done on basis of the images reduced with the
standard processing steps.

9.2.3 The Processing of the Narrowband Image

The narrowband H2 image requires an additional processing step to ensure that it only
contains the flux of the molecular hydrogen. The continuum emission which can be found
in the H2 filter wavelength range is created by other radiation mechanisms and must be
subtracted. Therefore the continuum Ks image was scaled to the H2 image by using several
stars as continuum sources. This led to a scaling factor of 1/12.8 which is in the order of
the ratio between the filter transmission window sizes. As both images have a similar PSF



141 9.3. ANALYSIS OF NGC 1156

Figure 9.2: LUCIFER image of the galaxy NGC 1156 with the Ks filter. This image is a
combination of 15 exposures, 1 minute each.

(FWHM ≈ 0.′′6) no additional convolution was necessary. The scaled Ks image was used
to subtract the continuum of the H2 image.

9.3 The Analysis of the Data Set

The processed scientific images are analysed differently. The Ks image is used to create a
photometric catalogue. This catalogue is combined with the results of HST archival data
to derive a distance to NGC 1156. The H2 image instead was inspected for structured
emission in the outer parts of the galaxy. The results of these analyses are presented in
this section.

9.3.1 The Photometry of NGC1156

A photometric data set with 724 objects was extracted from the Ks image by using the
SExtractor software package (Bertin and Arnouts, 1996). This software determines the
magnitude of an object by calculating the flux within an aperture. Thereby the background
level of each object is collected automatically and included in the magnitude calculation.
An aperture of 10 pixels was chosen. This is equivalent to twice the FWHM of the PSF.
The zero point of the Ks image was determined with 8 reference stars of the 2MASS
catalogue to be 23.95 mag (Vega). During the commissioning of the LUCIFER instrument
the zero point was determined to have a value of 24.00 mag. This value is consistent
with the 2MASS calibrated zero point value within the measurement uncertainties of the
photometry of ∆mag = 0.1 that has been empirically determined during the zero-point
calibration. The extracted magnitudes have been corrected for a foreground extinction of
0.082 mag (Schlegel et al., 1998).
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Figure 9.3: HST archive image of NGC 1156. A single 140-second exposure taken by the ACS
system and the F625W filter (R band). Blue circles mark the objects which have
been used for Ks and R band photometry. Red boxes mark objects that have been
inspected in detail.

The Ks photometric data set of NGC 1156 was extended by data of the Hubble
Space Telescope (HST) legacy archive. In 2004 NGC 1156 was observed with the Ad-
vanced Camera for Surveys (ACS) (Proposal: 9892/P.I.: Jansen). The observations were
carried out with the F625W (R) and the F658N filter (Hα). As the available photo-
metric data set is given in AB magnitudes a conversion to Vega magnitudes was applied
(RVega = RAB − 0.055 (Frei and Gunn, 1994)). Additionally the R band extinction of
0.599 mag by the Milky Way was corrected (Schlegel et al., 1998). After matching
both photometric catalogues, rejecting objects with uncertain magnitudes and confining
the position on the galaxy, 197 objects remain. In the HST/ACS image (Figure 9.3) these
objects are marked with circles.

9.3.2 The Distance to NGC1156

The distance of NGC 1156 was determined on basis of the Ks photometry. An analysis
of the size of superbubbles identified in the Hα image (see Figure 9.9, right) taken by
HST/ACS constrained the distance to 5 Mpc to 10 Mpc. Chu et al. (1995) specified
typical sizes of superbubbles in the LMC. Their values have been taken as reference for
the distance estimation. The covered magnitude range of the data set implies that the
resolved stars are intrinsically brighter than red giants and therefore the Tip of the Red
Giant Branch (TRGB) method (Lee et al., 1993) could not be applied. The objects
of the photometric catalogue are either red supergiants, extended objects like globular
cluster, background sources or objects with a blended photometry in Ks.

The galaxy NGC 1156 is similar to the LMC in many aspects, especially mass and
metallicity (see Minchin et al., 2010). In Oestreicher et al. (1997) a catalogue
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Figure 9.4: Colour magnitude diagrams of red supergiant candidates of the LMC (Oestre-
icher et al., 1997) for different colour terms. In each diagram a linear function is
fitted to the upper edge of the main aggregate of stars. The best linear separation
between the main aggregate and outliers is achieved with broader colour terms.
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Figure 9.5: Alignment of the upper edge of the main aggregate of the LMC (left) and
NGC 1156 (right). The density distributions perpendicular to the linear function
of Figure 9.4, right, are analysed to determine the turning-points.

of red supergiant candidates in the LMC is presented. A comparison of different colour
magnitude diagrams of this LMC data set indicates a main aggregate surrounded by
outliers (see Figure 9.4). The upper edges of this main aggregate are fitted with a linear
separation function for each diagram. The fit of the R−Ks/Ks colour magnitude diagram
was used to determine the actual turning point in the density gradient which proceeds
perpendicularly to this linear function (see Figure 9.5). The difference in b-values can be
directly transformed into a magnitude offset. The presented approach to measure distances
is new. The structure which is aligned is most likely associated to the Humphreys-Davidson
limit a physical upper luminosity limit for supergiants. Together with a distance modulus of
the LMC of m−M = 18.5 mag a distance modulus of m−M = 29.0 mag was determined
for NGC 1156. This leads to a distance 6.3 ± 0.4 Mpc for this galaxy. The uncertainty
of ±0.4 Mpc (±0.14 mag) is caused by the measurement precision of the photometry of
∆mag = 0.1 and the exactness of the density alignment of ∆mag = 0.1.

In Figure 9.6 the R − Ks/Ks colour magnitude diagram of the galaxy NGC 1156 is
presented. The absolute Ks magnitudes are obtained by using the calculated distance
modulus. For comparison the red supergiant candidates in the LMC are plotted, too. As
a representative for the class of highly luminous red hypergiants Variable A in M 33 is
given (Humphreys et al., 2006). This luminous object is situated right below the edge
of the main aggregate. Additionally 4 theoretical isochrones which have be improved for
asymptotic giant branch stars by Marigo et al. (2008) are plotted. These isochrones
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Figure 9.6: Colour magnitude diagram on basis of the LUCIFER Ks band and HST/ACS R
band photometry of NGC 1156. The best match to LMC values of Oestreicher
et al. (1997) was achieved for a distance of NGC 1156 of 6.3 Mpc. Variable A
in M 33 is plotted as a reference point for a highly luminous red supergiant. The
plotted theoretical isochrones for asymptotic giant branch stars (Marigo et al.,
2008) allow to determine the age of the stellar population. Objects with conspic-
uous positions in the diagram are marked by letters and are presented separately
in Figure 9.7.

are plotted for stars with a metallicity of Z = 0.008, which is comparable to the LMC.
They allow to determine the age of the stellar population and to constrain the duration of
the starburst to at least 25 Myr. The progression of the isochrones fits well with the found
distribution of stars, too. The slight mismatch of the isocrones for very red objects is a
known problem of the colour transformation from Teff due to strong absorption features in
the spectrum, stellar winds and the circumstellar environment. Objects with conspicuous
positions in the diagram are marked by letters. These objects are marked in Figure 9.3
and are compared in Figure 9.7. The more blue objects R, S and T which are located in
the halo of the galaxy are extended in the HST/ACS R band image. These objects are
most likely globular clusters or background galaxies. Except for G, M and O all remaining
objects are blended in the Ks image and can therefore be ignored in the colour magnitude
diagram. The G, M and O objects could be foreground sources or variable stars, because
6 years past since the HST/ACS observation. Therefore further observations are required
to determine their nature.
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Figure 9.7: A detailed comparison of objects with conspicuous colours/magnitudes of
Figure 9.6. The LUCIFER Ks images are compared with the HST/ACS F625W
images.
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Figure 9.8: Continuum subtracted H2 image of NGC 1156 observed with LUCIFER. Addi-
tionally the regions which exhibit structuredH2 emission are marked and displayed
with an increased contrast in Figure 9.10.

Figure 9.9: Comparison of Spitzer 8µm and HST/ACS Hα image. Both images have the same
coordinate grid as in Figure 9.3.3. (left) Spitzer archive image of NGC 1156 which
was taken in channel 4 (8µm) of the IRAC system. (right) HST archive image
of NGC 1156. Two combined 600-second exposures taken by the ACS system and
the F658N filter (Hα).
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Figure 9.10: Detailed study of selected regions of NGC 1156. The continuum subtracted
LUCIFER H2 images have been enhanced in contrast and a boxcar smoothing
filter was applied. For comparison the same regions are plotted for Spitzer/IRAC
8µm and HST/ACS Hα data.

Karachentsev et al. (1996) determined for NGC 1156 a distance modulus of m−
M = 29.46 ± 0.15 mag (7.8 Mpc) by using the three brightest red and blue stars. Their
result is comparable to the one presented here calculated with the aligned supergiant edge.
Bottinelli et al. (1984) calculated a distance modulus of m−M = 27.89 mag (3.8 Mpc)
with the B band Tully-Fisher relation. The difference of 1.1 mag fits well with the standard
error of the Tully-Fisher relation of 1.2 mag for irregular galaxies (Karachentsev et al.,
1996).

9.3.3 The Analysis of the H2 Image and a Detection of Warm Molecular
Hydrogen

In Veilleux et al. (2009) a detection of extraplanar warm molecular hydrogen in M 82
is presented. M 82 is the most prominent galaxy with a massive central starburst. They
show that knots and filaments can be traced up to a distance of 3 kpc above the disc.
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Based on their results NGC 1156 was observed to test whether or not H2 can be detected
in a dwarf galaxy with a global starburst. The observed H2 emission line is caused by
a rovibrational mode of the molecular hydrogen which is excited by inelastic collisions
introduced by shocks and heating by the UV/X-ray radiation from the starburst. A better
knowledge of the distribution of H2 would provide a broader understanding of the cooling
processes in a starburst galaxy.

In Figure 9.8 the continuum subtracted H2 image is presented. This observation was
visually inspected with different intensity transfer functions to determine regions with
structured emission of warm molecular hydrogen. The three marked regions in the outer
part of the galaxy have been selected because they show interesting structures and fila-
ments. These regions are presented in Figure 9.10 with an increased contrast. Additionally
the data was smoothed with a boxcar filter (1.′′6) to improve the signal-to-noise ratio. For
each of the three regions Spitzer/Infrared Array Camera (IRAC) 8µm archive images (Pro-
gram ID: 69/P.I.: Fazio, see Figure 9.9, left) and HST/ACS Hα archive images (Proposal:
9892/P.I.: Jansen, see Figure 9.9, right) are presented.

In Region I two linear structures proceed away from the galaxy towards NW similar
to outflow structures described by Cecil et al. (2001) in NGC 3079. The lower struc-
ture matches with an elongated Hα structure which is detected at 8µm, too. The upper
structure instead is probably a misinterpretation of several aligned detections as a con-
nected filament. It is a row of knots of warm molecular hydrogen. Therefore this structure
is probably not a galactic chimney. Region II shows several shell-like structures which
have counterparts in the 8µm image and contain regions of Hα emission. Additionally
a long elongated filament can be found in the lower part of the LUCIFER H2 image.
This structure shows counter parts in the 8µm observation, too. It connects several star
forming regions that can be identified in the Hα image. In Region III an arc-like structure
is detected in both the H2 LUCIFER and the 8µm Spitzer image. This structure has no
counterpart in the Hα image.

Following the discussion of Veilleux et al. (2009), H2 observations are an impor-
tant counterpart to Polycyclic Aromatic Hydrocarbons (PAH) observations. They allow to
detect and analyse the dusty and the molecular components in the winds of galaxies. The
detailed transportation process of the molecular hydrogen without destroying it is not well
understood, yet (Veilleux et al., 2009). For some regions both the H2 and PAH detec-
tions correlate well. In other regions the ratios between the detections differ significantly.
The same phenomenon can be observed in our data. This indicates that other processes
than shocks or UV radiation are involved and further investigation is needed (Veilleux
et al., 2009).

The LUCIFER observations demonstrate that it is possible to detect H2 with an 8-m
class telescope in a dwarf galaxy. Further observations with longer integration time are
required to provide data with better signal-to-noise ratios which would allow to analyse
the structure of the filaments. A quantitative comparison of the detected PAH (Spitzer
8µm) and the Hα emission (HST/ACS) would be possible then.
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An Efficient Method for Photomet-
ric High Redshift QSO Candidate
Selection

T
he costs of building and operating a
10 -m class telescope limit the number
of facilities and thus the available ob-

servation time. Therefore an efficient selection
of scientific targets is mandatory. This chapter
presents an approach to select QSO candidates

with high redshift (z > 4.8) based on photometric
catalogues. These candidates can be spectroscop-
ically verified with the LUCIFER instrument. As
part of the candidate selection approach a pho-
tometric redshift estimator is presented.

In the late 1950’s observations in the radio regime discovered quasi-stellar radio sources
(Quasars) with no optical counterpart. Early observations of Quasars like 3C273 used
lunar occultations to determine their position and confine their size with high precision
(Hazard, 1962; Hazard et al., 1963). This information on 3C273 allowed to assign
an object in the visual wavelength range and spectroscopically determine a redshift of
z = 0.158 (Greenstein and Schmidt, 1964). Later a Quasar was found to be a distant
galaxy with an Active Galactic Nucleus (AGN).

An AGN is a central super-massive black hole which accretes material and thereby
creates radiation. This phenomenon is seen in different ways and therefore creates a large
number of of observable AGN classes (see Carroll and Ostlie, 2007): (i) Spiral galaxies
with a very bright nucleus are called Seyfert Galaxies. The objects of this class show weak
radio emission. This class is divided into objects with broad as well as narrow emission
lines (Type 1) and those showing only narrow lines in their spectra (Type 2). (ii) The class
of quasi-stellar objects (QSOs) with the radio loud subclass of Quasars. The subclass of
Blazars contains highly variable sources with strong radio emission. (iii) Radio Galaxies
are elliptical galaxies which show strong radio emission. This type of AGN is divided in 2
subclasses by using the same criteria as for Seyfert Galaxies in the optical or employing
the Fanaroff-Riley classification in the radio (Fanaroff and Riley, 1974). (iv) Another
class that is associated with AGNs is the class of ULIRGs. The members of this class are
possible dust covered QSOs or their radiation is driven by a heavy starburst event.

Antonucci (1993) uniformly describes this zoo of AGNs. The different types of AGNs
that are observed can be explained with different orientations of the strongly non-spherical
inner part. The class of QSOs is among the most luminous object types in the Universe
(Page, 1964). Even though QSOs can be very distant their extreme luminosity allows
us to observe them and thus to study processes in the early universe. Another benefit of
their intrinsically high luminosity is the ability to find these sources even in surveys with
low detection levels. A representative sample of high-z QSOs would help to understand
the formation process of galaxies (White and Frenk, 1991) and the influence of super-

149
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massive black holes on galaxy evolution (Cattaneo et al., 2009). The formation of
larger galaxies through hierarchical clustering has direct effects on the creation of AGNs.
Carlberg (1990) found that the birth rate of QSOs is proportional to the rate of mergers
of gas-rich galaxies. The presence of an AGN has direct consequences for the hosting galaxy.
As soon as the AGN starts to accrete material and produces radiation, the gas content of
the bulge is heated and in dependence on the strength of the radiation blown away. This
directly leads to a stop of star formation in the bulge (see Cattaneo et al., 2009).

As there are only a few QSOs known with a redshift of z > 5, statistics on their number
density is not reliable (Cristiani et al., 2004). For QSOs with z > 6 the Lymanα (Lyα)
emission line is shifted to wavelengths above 0.85µm, the lower limit of the wavelength
range of LUCIFER.

10.1 Panoramic Catalogues as a Base of Target Selection

As larger optical telescopes tend to improve both sensitivity and spatial resolution, the field
of view is reduced correspondingly. A reduced field of view requires an appropriate selection
of targets based on previous observations. Today, large panoramic catalogues are available
which can be used for the target selection process. To operate and guide the Hubble Space
Telescope (HST) a first digital all-sky catalogue (GSC) was required. It had to be created
on basis of scans of analogue photographic Schmidt plates (≈ 1400 plates× 400 MB) (see
Lasker et al., 1990). For the NIR wavelength range (J , H, Ks band) the Two Micron
All Sky Survey (2MASS) can be used (see Skrutskie et al., 2006). It was created to
have an all sky catalogue in the NIR wavelength range. In this catalogue the size of the
processed data reached 2 TB.

The presented method of photometrically selecting high redshift QSO candidates is
based on the Sloan Digital Sky Survey (SDSS) (see York et al., 2000). A dedicated
2.5 -m telescope at the Apache Point Observatory in New Mexico was used to create an
imaging and spectroscopic catalogue of the northern Galactic Cap (9, 583 deg2). Images
have been taken in drift-scan mode using 5 broadband filter equipped rows of 6 2048 ×
2048 pixel2 CCDs each. The resulting u, g, r, i, z band stripes have been processed to
create an object catalogue which covers the 300 nm to 1,000 nm wavelength range. For a
selected sub-sample a spectroscopic analysis has been done with a fibre-fed spectrograph.
Each observation was executed in parallel for 640 objects. The used Sixth Data Release
(DR6) contains 10 TB of calibrated images and spectra. 287 million objects are stored
in the catalogue of which 1.27 million have spectra (see Adelman-McCarthy et al.
(2008) for more details on DR6). The increasing amount of data which is available in
catalogues can no longer be handled manually. It requires an automated processing and
selection of scientifically important objects. The spectroscopically observed objects have
been automatically classified by correlating them with 33 template spectra. In Schneider
et al. (2010) a hand-vetted catalogue of 105,783 spectroscopically confirmed QSOs is
presented. This catalogue contains 1,248 objects with z > 4 whereof 56 objects have
a redshift of z > 5. It is used as a reference set for the photometric selection method
presented hereafter.

10.2 A Photometric Redshift Estimator

An efficient creation of high-z QSO candidate catalogues requires a precise photometric
estimation of the redshift. These estimates allow the rejection of QSO candidates with
a redshift below a certain threshold. Photometric methods try to detect the position of
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Figure 10.1: Spectra of the high-z QSOs SDSS J082547.79+332836.9 (z = 3.81) and SDSS
J165902.12+270935.1 (z = 5.31). In the background the wavelength dependent
quantum efficiency of the u, g, r, i, z bands of SDSS are plotted. The Lyα
emission line of the QSOs is red-shifted to the r and i band, respectively.

strong emission and absorption features which are unresolved in the broadband filters.
In Figure 10.1 the spectra of 2 high-z QSOs are presented together with the filter bands
of SDSS. The Lyα emission lines of these QSOs dominate the flux in the r and i band,
respectively.

10.2.1 Previous Photometric Redshift Estimation Methods

There are several methods available for a photometric redshift estimation. A classical way
of photometric redshift estimation is the fitting of Spectral Energy Distributions (SEDs).
This method is typically limited to a small set of representative model spectra. These
spectra can be created based on empirical or simulated SEDs. In Bolzonella et al.
(2000) an estimation method that uses a χ2 minimisation is presented. The quality of the fit
is highly dependent on the applied template spectra. When the used photometric features
do not allow to distinguish between the different SEDs the fit can create catastrophic
outliers. The big advantage of the SED fitting approach is the ability to predict good
values even for objects with spectroscopically yet unobserved redshifts.

Another way of redshift estimation is based on empirical reference data. In O’Mill
et al. (2011) such an approach is presented for the SDSS data. 80% of the Main Galaxy
Sample (MGS) (see Strauss et al., 2002), 10% of the Luminous Red Galaxy Sample
(LRGS) (see Eisenstein et al., 2001) and 10% of the Active Galactic Nucleus Sample
(AGNS) (see Kauffmann et al., 2003) have been combined to a set of 550,000 objects
with spectroscopic redshifts. Half of this reference set was used for training a 9:14:14:14:1
Artificial Neural Network (ANN) and half for testing. The 9 input nodes represent the
SDSS magnitudes, the concentration index and the Petrosian radii in the g, r band. 3
hidden layers of 14 neurons each have been used to calculate the redshift output. They
limited their tests to a redshift range of z < 0.4. In this range their estimates deviate with
an rms ≈ 0.03 from the spectroscopically determined redshifts.

Wu and Jia (2010) present a photometric redshift estimator that combines SDSS and
UKIRT Infrared Deep Sky Survey (UKIDSS) data. A reference sample of 7,400 QSOs with
0.5 < z < 5.2 was divided into 91 redshift bins. Each bin was analysed and a median colour
was calculated for the 8 directly neighbouring bands. In their approach to find the most
probable redshift they applied a χ2 minimisation of colours that take the photometric
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SDSS PhotoObjID z Reference SDSS PhotoObjID z Reference
588023045868553340 5.79 Fan et al. (2006) 587741421098303812 6.00 Fan et al. (2006)

587740525079167786 5.80 Fan et al. (2004) 587738615416554219 6.01 Fan et al. (2006)

587727942951109703 5.82 Fan et al. (2001) 587729751132603659 6.05 Fan et al. (2003)

587733411521299389 5.83 Fan et al. (2006) 587735666926158831 6.07 Fan et al. (2004)

587731186204541926 5.85 Fan et al. (2004) 587739608093491422 6.13 Fan et al. (2006)

587737808499572747 5.85 Fan et al. (2006) 587736783608677304 6.22 Fan et al. (2004)

587736914601902923 5.93 Fan et al. (2004) 587732482206139341 6.23 Fan et al. (2003)

587738951494075293 5.93 Fan et al. (2006) 587728881415553909 6.28 Fan et al. (2001)

587729157893456734 5.99 Fan et al. (2001) 588013383815791587 6.43 Fan et al. (2003)

Table 10.1: High-z QSOs which have been found with the i dropout method. These QSOs
have been used to extend the reference sample.

errors into account. As a result of their tests of the redshift estimator 71.8% of their
reference sample have a redshift estimation error of |∆z| < 0.1.

The presented redshift estimation methods either rely on physical assumptions or the
quality of the used reference set. When the size of the reference set is increased to improve
the estimation quality the processing speed drops. As part of the QSO selection process
an estimator was developed which provides both, the ability to process large reference sets
without requiring physical assumptions or models.

10.2.2 A kNN Regression Model for Redshift Estimation

A new redshift estimator was developed which is based on empirical data to support the
QSO selection process (see Section 10.3. This estimator realises the important step of
rejecting candidates with low redshifts. It uses a k-Nearest Neighbours (kNN) regression
model to predict redshifts (see Hastie et al., 2009). This is similar to the approach
presented in Csabai et al. (2003) to estimate redshifts of galaxies with z . 0.5. The
predicted redshifts Ŷ are calculated from the redshift values yi of the k Euclidean closest
objects. Thereby the neighbourhood N(−→x ) is determined on basis of the object represen-
tation −→x i in the feature space.

Ŷ (−→x ) =
1
k

∑
−→x iεNk(−→x )

yi

To retrieve the k neighbours N of −→x efficiently, a k-Dimensional Tree (kd-Tree) is used
(Bentley, 1975). This data structure uses a binary search tree to allow a spacial look-up
in O(log2n) instead of O(n) where n is the number of stored multidimensional values.
Besides the redshift value the standard deviation of the k nearest yi is calculated as a
quality measure. High standard deviations indicate a bad coverage of the target space. To
analyse the distribution of reference objects in the feature space the length of the average
distance vector to the k neighbours can be calculated. Large values indicate that the
requested object lies out of the reference sample and therefore might have a very high/low
redshift. The disadvantage of the used k-Nearest Neighbours (kNN) regression model is its
limitation to predict only values that are covered by the reference sample.

A reference sample was created to support the detection process of high redshift QSOs.
This sample is required to populate the feature space and was created on basis of the
SDSS Quasar catalogue (see Schneider et al., 2010). To increase the processing speed
of estimating redshifts, the size of the reference sample was reduced. For this reason the



153 10.2. REDSHIFT ESTIMATION

Reference Redshift Test Set Size 〈 ∆z
1+z〉 σ ∆z

1+z
〈∆z〉 σ∆z

complete 1.0 ≤ z < 6.5 77,096 QSOs 0.003 0.033 -0.007 0.091
complete 4.0 ≤ z < 6.5 1,258 QSOs 0.008 0.024 -0.065 0.126
complete 4.5 ≤ z < 6.5 406 QSOs 0.002 0.021 -0.011 0.117
reduced 1.0 ≤ z < 6.5 77,096 QSOs -0.023 0.095 -0.024 0.119
reduced 4.0 ≤ z < 6.5 1,258 QSOs 0.010 0.025 0.036 0.133
reduced 4.5 ≤ z < 6.5 406 QSOs 0.002 0.016 0.001 0.087

Table 10.2: Results of fitting Gaussian distributions to the redshift estimation errors. The
values are given for both ∆z/(1 + z) and ∆z. Additionally the errors have been
determined on both the reduced and the complete reference sample.

input catalogue was split into 3 subsets: (i) The low redshift (z < 2) set with 81,238 objects,
(ii) the medium redshift (2 ≤ z < 4) set with 22,696 objects and (iii) the high redshift
(z ≥ 4) set with 1,258 objects. As the high redshift set contains only a few QSOs with z ≥ 5
and is limited to zmax = 5.5, 18 additional objects with SDSS features have been added (see
Table 10.1). To create a homogeneously distributed sample, all quasars have been assigned
to 120 bins for redshift between z = 1 and z = 7. For those bins below z = 4.8 the size was
limited to 10 reference objects and supernumerous objects have been randomly extracted.
Above a redshift value of z = 4.8 all QSOs have been included. Due to missing high-z
references the high-z bins are not filled equally. The resulting reference sample contains
1,106 QSOs with spectroscopically determined redshifts and SDSS magnitudes.

During tests with the kNN regression model it turned out that the best results are
achieved when using colours instead of magnitudes. This may be caused by distribution
effects of the reference objects in the Euclidean feature space which are induced by in-
trinsic object characteristics like their luminosity. These effects are minimised by a kind
of normalisation which is obtained by the dimension reduction from filter band to colour
space. The k value was set to 8, based on tests of the redshift estimation performance.
With smaller k values the standard deviation of the estimation errors increased. Slightly
larger values (up to 20) did not significantly improve the results.

10.2.3 The Evaluation of the Redshift Estimation

The quality of the kNN regression redshift estimation approach was tested on the QSOs
with spectroscopic redshifts taken from Schneider et al. (2010). As the reference sample
is limited to redshifts above z = 1, QSOs with lower redshifts have been excluded from the
tests. There are only a few high red-shifted QSOs known. Therefore all objects are required
as reference as well as for testing. To prevent any bias from objects that are part of both
the test and reference sample, objects are not considered as reference when their value is
estimated. For each object of the test sample a deviation ∆z = zspectroscopy − zestimation

and a redshift independent deviation ∆z/(1 + zspectroscopy) was determined. In Figure 10.2
the results of the estimation approach are presented. The area below z = 4.8 is marked
grey as those QSOs candidates lie out of the target redshift range. The comparison of
the results of the reduced reference sample (Figure 10.2, top left) with the results of the
complete reference sample (Figure 10.2, bottom left) demonstrate that both sets perform
equally for z > 4.8. With the reduced reference sample lower red-shifted QSOs can still be
processed with an appropriate estimation quality, even though the size of the reference set
was dramatically reduced from 77,096 to 1,106 objects. As the reduced reference sample is
homogeneously distributed in redshift, no catastrophic outliers are produced by an over-
representation of low redshifts. In Figure 10.2, top and bottom left, a redshift dependent
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Figure 10.2: Comparison of estimated and spectroscopic redshifts. The results which are based
on the reduced reference set (top left) are shown with a magnified z > 4 sector
(top right). Additionally the estimation results that are created with the com-
plete reference sample (bottom left) and the corresponding error distribution
(bottom right) are presented. The mean value, the 1σ and the 3σ values of the
fitted Gaussian distribution are plotted as a solid, a dashed and a dotted line,
respectively.

fluctuation between estimated and spectroscopic values can be observed. This is directly
connected to the passage of the Lyα features though the broadband filters.

The deviation ∆z as well as the redshift independent deviation ∆z/(1 + z) between the
estimated and spectroscopic redshifts are fitted with Gaussian distributions. This enables
one to quantitatively distinguish between the reduced and the complete reference sample.
Additionally the estimation quality is determined for different redshift ranges. The results
of these fits are presented in Table 10.2. The distribution of the estimation errors for
the full redshift range 1 < z < 6.5 is presented in Figure 10.3, left. In comparison to
the tests on the full redshift range, better results are achieved for the higher red-shifted
QSOs (see Figure 10.3, right). As it was intended, the reduced reference sample performs
better on QSOs in the targeted selection range with z > 4.8. This is caused by the better
representation per redshift bin of z > 4.8 QSOs in the feature space.

The performance of the redshift estimation is comparable to the results of Wu and
Jia (2010), but: (i) Their results are based on a test sample of only 8,498 QSOs which was
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Figure 10.3: Histogram of the redshift estimation errors calculated with all z > 1 (left) and
the high red-shifted z > 4 (right) QSOs which have spectroscopically determined
redshifts. The dashed lines are fits to the Gaussian distributions.

partially (87%) used to create the median colours. This creates a bias on the test results.
(ii) SDSS and UKIDSS data was used. (iii) The presented results are dependent on the
redshift range and therefore can not be compared directly.

Mortlock et al. (2011) present a Bayesian redshift estimator which is used to
assign observation priorities to their high redshift QSO candidates. Based on photometric
data of SDSS and UKIDSS an accuracy of ∆z ' 0.1 is presented for a redshift range of
5.8 < z < 7.2. This deviation is comparable to the results achieved with the presented kNN
regression model. As there are no QSOs known with z > 6.5 in both SDSS and UKIDSS,
the results have been computed with simulated SEDs and are based on a modelled high-z
QSO population.

In Cardamone et al. (2010) a 32-band data set is used to calculate photometric
redshifts. They present a 1σ scatter in ∆z/(1 + z) of 0.008 for 0.1 < z < 1.2, 0.027 for
1.2 < z < 3.7 and 0.016 for z > 3.7, respectively. For the high redshift range these results
are as good as the results of the kNN regression model presented here.

The developed redshift estimator performs equal to the other presented approaches. Its
main benefit is to be able to predict photometric redshifts with comparable quality even
with less photometric bands. Additionally the processing speed on large reference samples
is increased by using special data structures.

10.3 A Photometric QSO Selection Approach

The described estimation of redshifts is dependent on a reliable pre-selection of QSOs. The
main problem in selecting these candidates is that broad band observations of the high
red-shifted SEDs of QSOs become similar to the SEDs of cool stars. Before describing the
kNN-based QSO selection approach and the creation of the required reference samples, an
overview of currently available methods is given.

10.3.1 Previous Selection Approaches

In the SDSS, the selection of QSO candidates for spectroscopic observations is based on
photometric data (see Richards et al., 2002). The magnitudes which are extracted on
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basis of fits to a Point Spread Function (PSF) are inspected for unresolved objects in
distinct 3D colour spaces to separate QSOs from stars. Several decision trees have been
created that reflect relations in band flux and thereby define regions in the feature space.

The z > 5.8 QSOs that are presented in Fan et al. (2001, 2003, 2004, 2006) have been
detected by using an i band dropout technique in combination with 2MASS magnitudes.
This technique assumes no detection in the u, g, r band, a weak detection in the i band
and a detection in the z band. The principle behind this is that the strong Lyα forest
absorption enters the i band at z > 5.5. The resulting constraints are: magz < 20.2 with
∆magz < 0.1, magi−magz > 2.2 and magz−magJ < 1.5. This method turned out to have
a high false positive rate. Only ≈ 3% of the candidates that had follow-up observations
were verified as QSOs.

Wu and Jia (2010) present a QSO selection approach that uses colour-colour rela-
tions in SDSS and UKIDSS bands. The best solution to separate QSOs from stars was
empirically found in the Y − K, g − z colour space with the linear relation Y − K >
0.46× (g− z) + 0.53. This relation correctly separates 97.7% of both the 8,498 QSOs and
8,996 stars which have been used as reference. Unfortunately this simple linear separation
fails for QSOs with z > 4. For this reason the relation J −K > 0.45× (i− Y ) + 0.64 has
been created to the find 99% of the 101 reference QSOs with z > 4. The downside of this
solution is that the contamination with stars is more than doubled. Another problem of
optimising the separating relation is that the equal cardinalities of the reference samples
do not necessarily reflect the real distribution.

Mortlock et al. (2011) presented a probabilistic candidate selection approach which
uses SDSS and UKIDSS to find the most probable high-z QSOs. Their approach is com-
parable to their redshift estimator. It uses a Bayesian model to separate QSOs from stars.
Their targeted redshift range is z > 5.8. With their approach a reduction of the primary
data set by a factor of ≈ 2.5× 104 to 893 candidates was realised. Thereby the probabilis-
tic evaluation of each object took 0.1 s to 0.01 s. Only 88 of these 893 candidates turned
out to be real detections of astronomical sources with 3 previously known high-z QSOs.
Follow-up observations left 7 photometric candidates of which 4 have an estimated redshift
z ' 6. The results of these candidates are not published yet.

10.3.2 A kNN Classifier for QSO Selection

To avoid the problems of the methods mentioned in the previous section a new classifier
was created. Its main purpose is to create QSO candidates with a high probability for
follow-up observations. For this reason the number of recovered QSOs is set to a lower
percentage than in the other presented approaches. Similar to the presented redshift esti-
mation approach, the classification is done with the kNN algorithm (see Hastie et al.,
2009). For the classification the types ti of the k nearest objects Nk in the feature space
are evaluated for each −→x . The corresponding ratios R̂ reflect the number of the 6k neigh-
bouring reference objects that are of a certain type tn. These ratios are calculated for each
type in T .

∀tnεT, R̂t(−→x )=tn =
1
k

∑
−→x iεNk(−→x )

{
1, ti = tn

0, otherwise

The QSO candidate selection is realised by combining the redshift estimator and 3
classifiers: (i) The first classifier should realise a coarse QSO pre-selection. This is done by
using a more general reference set with several object types. An Euclidean distance in the
PSF magnitude feature space is used to identify the kNNs. (ii) In the next step the redshift
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is estimated and low red-shifted objects are rejected (see Section 10.2). (iii) A classifier
which rejects cool stars is used to decrease the contamination by stellar objects. This is
realised by a comprehensive reference sample which contains cool stars and QSOs only.
The same feature space as for the coarse pre-selection is used. (iv) An alternative distance
measure d is used to run a classification with respect to the photometric errors. The first
part of this function reflects the similarity of two feature vectors −→u ,−→v in feature space
with respect to the measurement errors

−→
∆u,
−→
∆v. The second part ensures that objects

with similar errors become closer. When two objects with severely deviating measurement
errors are compared the first distance component decreases due to the dominant error
term. This is compensated by the second component.

d(−→u ,
−→
∆u,−→v ,

−→
∆v) =

N∑
i=1

(ui − vi)2

∆u2
i + ∆v2

i

+ (|∆ui| − |∆vi|)2

In each step of the selection process objects that do not match the ratio criteria are
rejected. The ratios have been created on basis of the SDSS objects with spectroscopic
classifications. They have been optimised to find as many high-z QSOs as possible while
simultaneously minimising the contamination by other objects. For the coarse pre-selection
step a ratio of 10 high-z QSOs of the 12 nearest neighbours was determined. The redshift
estimator is used to exclude objects with z ≤ 4.8. The standard deviation that is calculated
on the kNNs is used to allow an undershooting of this z value by 3σ. For the cool stars
rejecting classifier a ratio of 8 QSOs out of 17 nearest neighbours was empirically found
to produce the best results. This means that 10 or more cool stars are required to reject
a candidate. In the last selection step the 19 nearest neighbours are inspected. 12 of these
neighbours must be high-z QSOs. The objects that pass all 4 selection steps are written
to a result file. Instead of simple ratios it contains the types of the 20 nearest neighbours
for each step. This allows a post-processing to reduce the candidate list for follow-up
observations. The likelihood of a candidate being a high-z QSO can be estimated by
calculating different ratios afterwards. Thereby constraints can be combined like e.g., 10
of the 12 closest references are QSOs + only 1 cool star is allowed for the 8 nearest
neighbours + a maximum of 2 cool stars for all 20 neighbours. These constraints can be
specified for each of the classifiers separately.

As a pre-filtering of all 287 million SDSS objects a limiting i band magnitude of 16.5 is
used. Brighter objects or objects with an i band error > 0.2 mag are ignored. Additionally
only point-like or slightly extended objects are selected. To separate point sources from
extended ones SDSS uses the PSF and model magnitudes: When an object complies with
PSFmag −modelmag > 0.145 it is labelled as galaxy in the SDSS catalogue. Here, a value
of 0.3 is used instead to include slightly extended sources of e.g., possible lensed QSOs.
The corresponding database query created a sample of 122 million objects with u, g, r, i,
z band PSF magnitudes and errors.

The classifiers require reference samples similar to the presented redshift estimator
sample. The first sample was created to detect QSOs and represents 5 different types: (i)
All 1,258 high red-shifted QSOs that have been composed for the redshift estimation sam-
ple. (ii) A random selection of 1,000 medium red-shifted QSOs. A sample with randomly
selected (iii) 1,000 galaxies, (iv) 1,000 stars and (v) 1,500 cool stars with spectroscopic
classifications. The sample to reject cool stars was created from all 1,258 high red-shifted
QSOs and all spectroscopically determined cool stars that match the criteria described
above. The resulting reference sample contains 10,928 objects. By using spectroscopically
classified objects and objects detected by the i band dropout method as reference, the
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applied sample selection criteria (see Richards et al., 2002; Fan et al., 2001, 2003,
2004, 2006) are reproduced by the presented reference samples. Furthermore the objects
selected as QSO candidates by Richards et al. (2002) that turned out to be cool stars
improve the separation capabilities of the samples.

10.3.3 The Evaluation of the Selection Approach

To evaluate the performance of the presented selection approach all 1.2 million SDSS
objects with spectra have been photometrically analysed. When objects are evaluated
that are part of one of the reference sets, they are excluded from the neighbourhood
query to prevent any bias. A list of 242 objects was obtained which contains the resulting
candidates. The spectra of all of these objects have been visually inspected and their
types have been checked. 147 of these candidates are QSOs of the high-z reference sample
with z > 4.0. 75 of the known 147 QSOs with z > 4.8 are recovered by the photometric
selection. The 18 QSOs of the high-z extension sample have been tested separately as
they are not part of the SDSS spectroscopic catalogue. 17 of these QSOs can be detected
with the photometric selection approach. For these objects that have been found with an
i band dropout method the coarse classifier calculates ratios of ≥ 19 out of 20. Of all
32,210 known cool stars only 34 have been falsely classified as QSOs. The spectra of the
remaining 61 objects are of other types or are not assignable to a type.

As the execution of the individual classification steps is not order-dependent they have
been arranged by their processing speed. This ensures that computing intensive steps are
only executed when previous classifications have been successful. The developed software
scans lists of photometric features. Therefore it can easily be parallelised to increase the
speed of processing lists. A single instance is able to process 1,000 objects in 4 – 8 s on
a standard PC. For the creation of the final candidate list the software was running on 8
cores and processed the 122 million photometric data sets in a day.

The resulting list contains 121,715 objects that match the specified ratio criteria of the
selection steps. This sample contains redshift estimations for 82,258 candidates with z < 5,
34,264 with 5 ≤ z < 6 and 5,193 with z ≥ 6. The detection performance was calculated on
the spectroscopic sample to be ≈ 50%. Under the assumption that the classifier performs
comparably on the photometric sample, ≈ 60, 000 high-z QSOs are part of the candidate
list.

Cristiani et al. (2004) presented a space density for QSOs with 4 < z < 5.2. A
separate classification run for this redshift range created a list of 102,825 candidates.
In Figure 10.4 these candidates are plotted in comparison with the results of Cristiani
et al. (2004). The red line is a cumulative plot of all candidates while the blue line
assumes a QSO detection performance of 50%. When the ratio of the first selection step
is set to highest possible ratio (i.e. 12 QSOs under the 12 nearest neighbours) only 12,586
candidates remain. These candidates with the highest probability of being a QSO are
plotted as a green line.

The presented results are consistent with the results of Cristiani et al. (2004) and
the number of found QSO candidates fits well with the presented models. A model which
connects QSOs and dark matter halos with a minimal set of assumptions (MIN) is pre-
sented in (Haiman and Hui, 2001). This model assumes: (i) an un-evolved halo, (ii) a
constant black hole to dark matter halo mass ratio (iii) and a maximum accretion at the
Eddington limit (see Cristiani et al., 2004). As this model overpredicts high-z QSOs
(Haiman et al., 1999) it defines an upper limit for the presented candidate selection
approach. Monaco et al. (2000) present a model with a delayed QSO shining (DEL) in
which the AGN activity starts after the formation of the dark matter halo. In their model
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Figure 10.4: Comparison of the space density plot of QSOs (4 < z < 5.2) from Cristiani
et al. (2004) and the parameters derived from the created candidate sample.
Circles and stars show the GOODS based estimates of Cristiani et al. (2004)
while diamonds are used for SDSS results. The tiny dashed lines represents the
upper and lower 1σ confidence level of the GOODS data. The models that have
been used by Cristiani et al. (2004) are: PLE (dot-dashed), PDE (continuous),
MIN (short-dashed) and DEL (long-dashed). The 3 coloured lines represent the
entire candidate sample (100%), an assumed detection performance (50%) and
the candidates with the highest ratios R̂.

AGNs which are hosted in smaller halos are longer delayed than those AGNs in larger
halos. This allows brighter QSOs to appear before the fainter ones. The Pure Luminosity
Evolution (PLE) model (brighter objects in the past) and the Pure Density Evolution
(PDE) model (higher object density in the past) are used in Cristiani et al. (2004) to
extrapolate the results of (Boyle et al., 2000). Both, the high ratio results as well as
the results of the predicted detection performance fit well with these models. In DR6 of
SDSS the 95% detection repeatability for point sources in the z band is 20.5 mag. For this
reason the results with the highest probability deviate from the model fits for higher z
band magnitudes. The results of the other candidate lists fit well for z band magnitudes
below 21.5 mag. In comparison to the QSOs detected in SDSS, an appropriate amount
of candidates can be found even for z band magnitudes fainter than 19.5 mag (compare
Figure 10.4).

The presented QSO candidate selection approach is highly dependent on the coverage
of the feature space by the reference samples. Efficient data structures are mandatory
to provide good scanning performance when using large reference samples. Except of the
last step the kNN retrieval of all other classifiers is accelerated by kd-Trees (see Bentley,
1975). With the availability of larger spectroscopic surveys and larger sets of known high-z
QSOs as reference, better photometric selection results will be achievable.
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Even though not all of the known QSOs are recovered by the presented approach, the
resulting candidates have higher probabilities to be a QSO than those found with other
approaches. Follow-up observations with instruments like LUCIFER will help to determine
the real detection performance of the candidate selection. The objects that are found not to
be a QSO will directly improve the reference sets and thereby the detection performance.



Conclusions And Outlook

The first LUCIFER instrument is now scientifically used for more than 18 months. The
LUCIFER Control Software Package is as important as the instrument hardware in per-
forming observations. All software that was developed as part of this thesis never caused an
interruption of an observation run. The decision to be the first large astronomical instru-
ment which uses JAVA as programming language with its build-in capabilities to determine
exceptions and handle them is one reason for this excellent statistic. Another reason is the
choice to use a multi-tier service architecture which allows to independently control the
subsystems without interfering with the complete system. The services and frameworks of
the System Tier are the core of the control software. They provide all functionalities to
run a distributed system including the automatic restart of unintentionally ended or failed
services. As the services of the Control Tier realise the complex communication between
the software the electronics the complexity is split in individual services and therefore can
be handled independently. The MOS Unit is the most complex cryogenic mechanism ever
used in an astronomical instrument (Richard Green, LBTO director). The operation
of this instrument unit is realised by the corresponding service and sequencing framework
of the Instrument Tier. The use of finite state transition networks to define the motion
sequences of the individual sub-units of the MOS Unit prevented several severe damages
to the instrument. Every malfunction of the hardware was detected successfully and the
software stopped all motions to prevent physical damage to the instrument. These hard-
ware failure could be manually recovered by an engineer using the provided engineering
access. A simulator was created to test the motion sequences prior to running them on the
real instrument. This virtual instrument was used to implement a new and full-automatic
cryogenic cabinet exchange procedure which can be controlled with a two button GUI.
Without any tests at the real hardware the cabinet exchange procedure could be per-
formed without any errors. Additionally the virtual instrument was several times used to
train staff in using the LUCIFER instrument.

With the operational LUCIFER instrument, NIR observations in Ks and H2 of the
dwarf galaxy NGC 1156 have been carried out. The raw data of these observations was
reduced and analysed. Due to errors during script execution the observation required a
special treatment of the raw data. To determine the distance of this galaxy a new distance
measurement method was developed which aligns the upper edge of the red supergiants in
a colour magnitude diagram. With this method a distance of 6.3±0.4 Mpc was determined
for this galaxy. The method does not require observations with integration times as long
as required by the traditional methods. The narrowband H2 image was analysed and
structured emission of warm molecular hydrogen was detected in the outer parts of the
galaxy. This is the first direct detection of warm H2 in the outer parts of a dwarf galaxy.

To provide targets for further observations with LUCIFER an approach to select can-
didates of high-z QSOs (z > 4.8) was developed. This approach uses a regression technique
to estimate redshifts on basis of photometric data sets as well as data mining algorithms to
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discriminate between QSOs and cool stars, which have a similar SEDs. The most impor-
tant part to create candidates with a high probability is the composition of the reference
samples. The applied data mining techniques have been optimised to provide a high pro-
cessing performance in order to handle large catalogues like the SDSS in a reasonable
amount of time. Tests on basis of a spectroscopically classified data set of 1.2 million ob-
jects show a true positive rate of ≈ 50% with a contamination of false positive candidates
≈ 50%. This is a significant progress in comparison to the the common techniques.

With the second LUCIFER instrument being installed at the LBT at the beginning of
2012 a completely new Operation Tier will be required that is able to handle the parallel
operation of two instruments. Additionally new functionalities to plan and automatically
execute a binocular observation are required. This includes the creation of new GUIs which
improve the usability of the instrument.

To improve the reliability of the newly developed distance measurement method, ob-
servations of other objects are required. Additionally the error of the method could be
improved by increasing the precision of the extraction of the photometric values. This
method allows to determine precise distance measurements even for fainter objects. These
results can be used to analyse the spatial distribution of galaxies in the local universe.
With deeper observations in the H2 quantitative analysis of the detected structures will
be possible. Therefore new observations of NGC 1156 are already planned.

The candidates in the high-z QSO sample need follow-up observations to determine
their true nature and the performance of the selection process. The required observation
time has already been granted. By extending the wavelength range, which is covered by
the reference samples, to the NIR QSOs with even higher redshifts can be found. This will
be done in the near future.
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The LMC Configuration

The LUCIFER Management Console (LMC) is the central element to start the LCSP
(see Section 3.3). Elemental to run the LMC effectively is to know how to configure the
software start-up. Therefore new services, Java application and other commands can be
added to an existing configuration. The start descriptors can be manipulated by using
the start configuration dialogue. This dialogue provides direct access to all attributes of
a descriptor (see Figure A.1). The intent of these attributes is described in Section 3.3,
too. A configuration can be saved to and loaded from an XML file. When starting the
LMC in the command shell such a configuration file can be specified by appending the
file name e.g., java -jar lcsp.jar start.xml. The JAR-file that is included in this command is
created by the build process (compare Appendix C) whereat the main class of the LMC
is specified in the manifest file.

Figure A.1: The LMC application start configuration window that is used to view and edit
start configurations.

Besides the option to manipulate the start descriptors graphically the configuration
file can be accessed with any kind of text editor. Listing A.1 presents in extracts an LMC
configuration file. To add new entries the specified size of the vector needs to be adjusted.
Each of the entries must contain a unique identifier without the need of being sorted. An
entry starts with the declaration of the start descriptor type. In the following one can
specify the attributes directly (see Table 3.1 for available types and attributes). The ex-
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emplarily presented descriptors of Listing A.1 can be used as a base for new descriptors.
For that reason an RMID, a service and a Java start descriptor have been selected to
cover the full range of available descriptor types. A more general program start descrip-
tor can be derived from a generic Java start descriptor by removing the mainClass and
programArguments attributes.

Listing A.1: start.xml (LMC Start Descriptor File)

1 <?xml version= " 1 . 0 " encoding= " U T F - 8 " standalone= " n o " ?>

2 <data>

3 <vector size= " 5 1 " >

4 <object identifier= " 0 " type= " d e . r u b . a s t r o . l u c i f e r . u s e r I n t e r f a c e . t o o l .

s e r v i c e . s t a r t . R M I D S t a r t D e s c r i p t o r " >

5 <value name= " s e r v i c e N a m e " type= " S t r i n g " >rmi:// localhost:1098/java.rmi.

activation.ActivationSystem </value>

6 <value name= " n a m e " type= " S t r i n g " >rmid 1098</value>

7 <value name= " c o m m a n d A r g u m e n t s " type= " S t r i n g " >-J-Djava.security.policy=

java.policy.all -J-Dsun.rmi.server.activation.debugExec=true -port

1098 -C-client </value>

8 <value name= " c o m m a n d " type= " S t r i n g " >nohup rmid</value>

9 <value name= " w o r k i n g D i r " type= " S t r i n g " >.</value>

10 <value name= " a u t o S t a r t " type= " b o o l e a n " >true</value>

11 <value name= " p r i o r i t y " type= " i n t " >0</value>

12 <value name= " e x e c u t i o n T i m e " type= " i n t " >5000</value>

13 <value name= " u s a g e " type= " i n t " >3</value>

14 </object >

41 <object identifier= " 3 " type= " d e . r u b . a s t r o . l u c i f e r . u s e r I n t e r f a c e . t o o l .

s e r v i c e . s t a r t . S e r v i c e S t a r t D e s c r i p t o r " >

42 <value name= " s e r v i c e N a m e " type= " S t r i n g " >rmi:// localhost:1098/

MessageServer </value>

43 <value name= " m a i n C l a s s " type= " S t r i n g " >de.rub.astro.util.message.

MessageServer </value>

44 <value name= " p r o g r a m A r g u m e n t s " type= " S t r i n g " >-runtime java -codebase

file:lcsp.jar -J-Djava.security.policy=java.policy.all -

enable_file_storage </value>

45 <value name= " n a m e " type= " S t r i n g " >MessageServer </value>

46 <value name= " c o m m a n d A r g u m e n t s " type= " S t r i n g " >-Djava.security.policy=java.

policy.all -Djava.rmi.activation.port =1098 -Djava.rmi.server.codebase

=file:lcsp.jar -cp lcsp.jar</value>

47 <value name= " c o m m a n d " type= " S t r i n g " >java</value>

48 <value name= " w o r k i n g D i r " type= " S t r i n g " >.</value>

49 <value name= " a u t o S t a r t " type= " b o o l e a n " >true</value>

50 <value name= " p r i o r i t y " type= " i n t " >30</value>

51 <value name= " e x e c u t i o n T i m e " type= " i n t " >10000</value>

52 <value name= " u s a g e " type= " i n t " >3</value>

53 </object >

403 <object identifier= " 3 1 " type= " d e . r u b . a s t r o . l u c i f e r . u s e r I n t e r f a c e . t o o l .

s e r v i c e . s t a r t . J a v a S t a r t D e s c r i p t o r " >

404 <value name= " m a i n C l a s s " type= " S t r i n g " >de.rub.astro.lucifer.userInterface.

gui.instrument.mosUnit.MOSPanel </value>

405 <value name= " p r o g r a m A r g u m e n t s " type= " S t r i n g " />

406 <value name= " n a m e " type= " S t r i n g " >GUI MOS engineering Client </value>

407 <value name= " c o m m a n d A r g u m e n t s " type= " S t r i n g " >-cp ./lcsp.jar</value>

408 <value name= " c o m m a n d " type= " S t r i n g " >java</value>

409 <value name= " w o r k i n g D i r " type= " S t r i n g " >.</value>

410 <value name= " a u t o S t a r t " type= " b o o l e a n " >false</value>

411 <value name= " p r i o r i t y " type= " i n t " >999</value>

412 <value name= " e x e c u t i o n T i m e " type= " i n t " >1000</value>

413 <value name= " u s a g e " type= " i n t " >4</value>

414 </object >
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The Service Program Arguments

Each service of the LCSP is based on the remote service framework (compare Section 4.1).
Therefore fundamental command line arguments are passed to each service by its server
skeleton. As the server applications initialise the services the command line arguments are
the best and often only way to control their operating mode during start-up. The available
arguments of the servers are presented in this appendix. This description starts with the
general arguments that can be specified for every service as their processing is realised by
the remote service framework.

-? -help displays a short list of available program arguments. The use of each of the
available arguments of a specific service is explained briefly in this listing. If the
arguments that are passed to the server are malformed or invalid the same help
screen is displayed.

-name together with this argument the name of a service is specified. This name is used
by e.g., the messaging system to uniquely identify a service.

-usage as the name argument this parameter is used to assign a usage to a service. This
usage is an additional information to distinguish between services. E.g., the services
of the Instrument Tier of both LUCIFER instruments are tagged as a part of the
left or right instrument. Available parameters are <1> for LUCIFER 1, <2> for
LUCIFER 2 and <3> for system services that are used by both instruments.

-codebase specifies the code base where the java classes of the service can be found. This
is required by the activation system daemon to create the service correctly. In the
other case the code base of the activation system must be modified to locate the
classes of each service. The correct specification of the code base is also required
by the clients to find the stub classes and load them on demand from the specified
location.

-runtime defines the runtime that should be used by the activation system daemon to
host the remote service. This is helpful if services require a specific JRE for their
execution.

-J is used to pass runtime arguments to the created virtual machine. This is required to
e.g., modify the disposable memory size. In the LMC<-J-Djava.security.policy=
java.policy.all> is specified to use the permissive LCSP security policy file for
the JRE and <-J-Djava.class.path=> sets the project specific class path.

-local prevents a service from being started on demand by the activation system daemon.
The service is started as a local remote service that is executed within the JRE of
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the servers skeleton instead. This allows for local debugging of a service which is
impossible for a dynamically activated one.

-suspend suspends the activated version of a service by sending a message to the cor-
responding remote object. A grace time can be specified to wait before ending the
service.

-stop stops the service completely. In comparison to the suspend argument the service
is not only ended. In addition it is ensured that the service is de-registered from
the activation system daemon and unbound from the registry. This is necessary to
prevent the service from being restarted automatically.

-config sets the configuration file that should be used. As every service uses a basic and
shared configuration file to store the access parameter of the centralised configuration
service the default value <localConfig.xml> can be changed.

-no config service disables the usage of the centralised Configuration Service. This means
that all configuration values are taken from a local file. It is advised to use this ar-
gument together with the -config argument to have a dedicated file.

-no time service disables the usage of the Time Service for service synchronisation.

-no message service disables the usage of the Message Service. This means that mes-
sages are processed locally without being send to the Message Service. A disabled
Message Service usage forces the remote service to print the messages out directly.

-ignore messages defines that all messages that are generated within the subsystems
are rejected and that no message is neither stored nor printed out.

Because the following program arguments are service dependent either the group or the
specific service is included in the description.

-unit specifies the address of the unit to connect to. This parameter is applied to all
services that interact with hardware via the RS232 framework. Without specifying
a certain unit address the hardware socket is transparently retrieved from the central
port server look-up service by the underlying socket communication. All services of
the electronics and environment allow the usage of this parameter (see Figure 3.1).

-server specifies the socket address of the GEIRS Server. This address is used by the
Readout Service to open a stream to the command server of the GEIRS software to
send and receive commands and responses.

-log transmissions activates the persistent logging of data transmissions between a ser-
vice of the Control Tier and its hardware counterpart. By default the data that is
transmitted is stored in a database. If the database storage is deactivated all trans-
mission are dumped to a file. This argument is very important to enable the engineers
to debug the hardware-software communication. All service that can specify a socket
address and therefore use the communication framework support this argument.

-no database deactivates the database storage of a service. This is either possible for
the services mentioned above that use a socket connection to communicate with the
electronics and allow persistent database storage of transmissions or those services
that have their own database connection to store elements. These are the Message
Service that is responsible for storing messages and the Journalizer that maps the
instrument status to the database.
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-MOS tells the MCU Service which version of hardware is connected. Since both the
instrument units and the MOS Unit use comparable electronics this argument en-
ables special functions for the MOS Unit. This differentiation is also required for the
correct integration of LuciferVR.

-check encoder enables the encoder check capabilities of the MOS Unit Service. By
continuously observing the values of the MOS hardware encoder drift errors can be
traced.

-logging interval specifies a fixed logging interval for all services of the Control Tier
that control the environment of the instrument (except the Calibration Unit). If
no fixed logging interval is specified those units use by default an adaptive logging
mechanism that increases its rate when changes are measured and vice versa.

-check hardware enables a continuous testing of the switches that are access via the
Switch Box Service. This is necessary to test the stability of the switches and find
randomly jumping outputs.

-send configuration activates the sending of initial configuration data to the Pressure
Monitor and Temperature Controler electronics.

-no journalizer disables the status reporting to the Journalizer. This argument is ap-
plicable to all services of the Instrument Tier as well as the environment services,
Readout Service and Telescope Service of the Control Tier.

-hibernate allows to specify an alternative Hibernate configuration file.

-use lucifer vr activates the native probes in the electronics services to send commands
directly to the virtual instrument (see Chapter 8).

-simulate activates the integration of LuciferVR into the electronics services or the tem-
perature monitor. This means that communication with the real hardware is disabled
and all responses are created on the basis of the simulated instrument status.

-reload tells the Configuration Service to reload the configuration file. This can be re-
quired if the configuration was changed manually instead of using the LMC.

-enable file storage enables the file storage of messages in the Message Service. This
argument was used to analyse messages off-line before the Message Database Browser
provided a user-friendly visualisation of stored messages.
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The LCSP Ant Build File

The LUCIFER Control Software Package (LCSP) is build with the Ant tool. This tool
allows to control the calls to individual tasks that compile, package and assemble the
software product. In the LUCIFER project an automated build process was introduced in
a very early state, to allow all developers a unified and easy way of software generation
and deployment. The following Listing C.1 presents the used Ant configuration file.

The configuration file starts with an Ant preamble where the project name and basic
parameter are defined. This preamble is followed by lines that specify the name of the ap-
plication and the different directories of the project. This directories are used to separate
sources, resource files (e.g., images), external libraries, configuration data and internation-
alisation files. The next specified directories are generated by the build process and contain
the results of the individual build tasks (e.g., compiled classes, API-documentation, bun-
dled software package). Finally the used external packages are defined.

Listing C.1: build.xml (LCSP Build File)

1 <project name= " l u c i f e r  c o n t r o l  s o f t w a r e  p a c k a g e "

2 default= " b u i l d _ d i s t r i b u t i o n "

3 basedir= " . . " >

4 <description >Buildfile of the lucifer control software package </description >

5 <property name= " A P P L I C A T I O N _ N A M E " value= " l c s p " />

6 <property name= " A P P L I C A T I O N _ A R C H I V E " value= " l c s p . j a r " />

7
8 <property name= " S O U R C E _ D I R " location= " $ { b a s e d i r } / s o u r c e " />

9 <property name= " R E S O U R C E _ D I R " location= " $ { b a s e d i r } / r e s o u r c e " />

10 <property name= " L I B R A R Y _ D I R " location= " $ { b a s e d i r } / l i b " />

11 <property name= " C O N F I G _ D I R " location= " $ { b a s e d i r } / c o n f i g " />

12 <property name= " L O O K U P T A B L E _ D I R " location= " $ { b a s e d i r } / c o n f i g / l o o k u p T a b l e s " />

13 <property name= " I 1 8 N _ D I R " location= " $ { b a s e d i r } / I 1 8 N " />

14 <property name= " T A R G E T _ D I R " location= " $ { b a s e d i r } / c l a s s e s " />

15
16 <property name= " D O C U M E N T A T I O N _ D I R " location= " $ { b a s e d i r } / d o c s " />

17 <property name= " D I S T R I B U T I O N _ D I R " location= " $ { b a s e d i r } / d i s t " />

18 <property name= " E X P O R T _ D I R " location= " $ { D I S T R I B U T I O N _ D I R } / e x p o r t " />

19 <property name= " E X P O R T _ L I B _ D I R " value= " l i b " />

20 <property name= " E X P O R T _ L O O K U P T A B L E _ D I R " value= " l o o k u p T a b l e s " />

21
22 <property name= " M Y S Q L _ C O N N E C T O R _ N A M E "

23 value= " m y s q l - c o n n e c t o r - j a v a - 3 . 1 . 1 2 - b i n . j a r " />

24 <property name= " H I B E R N A T E _ C O N F I G _ F I L E " value= " h i b e r n a t e . c f g . x m l " />

25 <property name= " L O G 4 J _ C O N F I G _ F I L E " value= " l o g 4 j . p r o p e r t i e s " />

26 <property name= " P D F _ D O C L E T . J A R " value= " p d f d o c l e t - 1 . 0 . 2 - a l l . j a r " />

27 <property name= " T O O L S . J A R " value= " t o o l s . j a r " />

28 <property name= " J A R _ C L A S S _ P A T H "

29 value= " l i b / m y s q l - c o n n e c t o r - j a v a - 3 . 1 . 1 2 - b i n . j a r  l i b / h i b e r n a t e 3 . j a r  

l i b / j t a . j a r  l i b / l o g 4 j - 1 . 2 . 1 1 . j a r  l i b / d o m 4 j - 1 . 6 . 1 . j a r  l i b /

c o m m o n s - l o g g i n g - 1 . 0 . 4 . j a r  l i b / c o m m o n s - c o l l e c t i o n s - 2 . 1 . 1 . j a r  l i b

/ c g l i b - 2 . 1 . 3 . j a r  l i b / a s m - a t t r s . j a r  l i b / a s m . j a r  l i b / a n t l r - 2 . 7 . 6

r c 1 . j a r " />
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The next section of the build file is used to set some basic path variables. These path
information are used in later tasks.

30 <path id= " J A V A D O C _ C L A S S _ P A T H " >

31 < f i l e s e t dir= " $ { L I B R A R Y _ D I R } " >

32 < include name= " $ { T O O L S . J A R } " />

33 </ f i l e s e t >
34 </path>

35 <path id= " D O C L E T _ P A T H " >

36 < f i l e s e t dir= " $ { L I B R A R Y _ D I R } " >

37 < include name= " $ { P D F _ D O C L E T . J A R } " />

38 </ f i l e s e t >
39 </path>

40 <path id= " C O M P I L A T I O N _ L I B R A R I E S " >

41 < f i l e s e t dir= " $ { L I B R A R Y _ D I R } " >

42 < include name= " * . j a r " />

43 </ f i l e s e t >
44 </path>

The Ant build file syntax allows to define individual targets. These targets can be executed
individually. By defining dependencies the Ant tool ensures to execute the specified and
required targets previously. The next target is used to clean the output directory.

45 <target description= " c r e a t e  a  c l e a n  t a r g e t  d i r e c t o r y "

46 name= " c l e a n " >

47 <delete dir= " $ { T A R G E T _ D I R } " failonerror= " f a l s e " />

48 <mkdir dir= " $ { T A R G E T _ D I R } " />

49 </target>

The following target specifies how to copy the resources to the output directory. Therefore
the needed images, audio files, hibernate mapping and hibernate configuration files are
duplicated. Additionally the needed internationalisation property files are copied.

50 <target description= " c o p y  a l l  n e e d e d  r e s o u r c e s  t o  t h e  t a r g e t  f o l d e r "

51 name= " c o p y - r e s o u r c e s " >

52 <copy todir= " $ { T A R G E T _ D I R } " >

53 < f i l e s e t dir= " $ { R E S O U R C E _ D I R } " > <!-- copy images -->

54 < include name= " * * / * . g i f " />

55 < include name= " * * / * . j p g " />

56 < include name= " * * / * . a u " />

57 </ f i l e s e t >
58 < f i l e s e t dir= " $ { S O U R C E _ D I R } " > <!-- copy hibernate mappings -->

59 < include name= " * * / * . h b m . x m l " />

60 </ f i l e s e t >
61 < f i l e s e t dir= " $ { C O N F I G _ D I R } " > <!-- copy hibernate configuration -->

62 < include name= " $ { H I B E R N A T E _ C O N F I G _ F I L E } " />

63 < include name= " $ { L O G 4 J _ C O N F I G _ F I L E } " />

64 </ f i l e s e t >
65 < f i l e s e t dir= " $ { I 1 8 N _ D I R } " > <!-- copy I18N -->

66 <exclude name= " R o o t " />

67 <exclude name= " E n t r i e s " />

68 <exclude name= " R e p o s i t o r y " />

69 <exclude name= " * * / * d e _ D E . p r o p e r t i e s " />

70 </ f i l e s e t >
71 </copy>
72 </target>
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The next target contains all information that is necessary to call the JavaDoc tool and
generate the API-documentation. This targets depends on a successful compilation of the
source files. Together with the HTML pages a PDF document is generated. Besides the
default parameters a specialisation is needed to support the custom-made and project
specific annotation tags. More Information on the project specific tags can be found in
Appendix D.

73 <target description= " c r e a t e  t h e  j a v a D o c  d o c u m e n t a t i o n "

74 name= " j a v a D o c "

75 depends= " c o m p i l e " >

76 <mkdir dir= " $ { D O C U M E N T A T I O N _ D I R } " />

77 <delete dir= " $ { D O C U M E N T A T I O N _ D I R } / a p i " />

78 <tstamp /> <!-- Create the time stamp -->

79 <javadoc access= " p r i v a t e "

80 destdir= " $ { D O C U M E N T A T I O N _ D I R } / a p i "

81 sourcepath= " $ { S O U R C E _ D I R } "

82 packagenames= " d e . a s t r o . r u b . * "

83 windowtitle= " L u c i f e r  C o n t r o l  S o f t w a r e  P a c k a g e "

84 l ink = " h t t p : / / j a v a . s u n . c o m / j 2 s e / 1 . 5 . 0 / d o c s / a p i "

85 verbose= " t r u e "

86 linksource= " t r u e "

87 author= " t r u e "

88 version= " t r u e "

89 breakiterator= " t r u e "

90 maxmemory= " 5 1 2 m " >

91 <header>
92 <![CDATA[<em><b>L</b>ucifer <b>C</b>ontrol S</b>oftware <b>P</b>ackage <

br><font size=-2>by <a href=’mailto:polsterer@astro.rub.de’>Kai

Polsterer </a>, <a href=’mailto:juette@astro.rub.de’>Marcus J&uuml;

tte </a> and <a href=’mailto:volker.knierim@astro.rub.de’>Volker

Knierim </a></font ></em>]]>

93 </header>
94 < footer >
95 <![CDATA[<font size=-1>please report errors to <a href=’

mailto:juette@astro.rub.de’>Marcus Juette </a> or <a href=’

mailto:polsterer@astro.rub.de’>Kai Polsterer </a></font >]]>

96 </ footer >
97 <doctitle >Lucifer Control Software Package Documentation </doctitle >
98 <packageset dir= " $ { S O U R C E _ D I R } " >

99 < include name= " d e / r u b / a s t r o / * * " />

100 </packageset>
101 <tag name= " p r e "

102 description= " P r e c o n d i t i o n s : "

103 scope= " c o n s t r u c t o r s , m e t h o d s " />

104 <tag name= " p o s t "

105 description= " P o s t c o n d i t i o n s : "

106 scope= " c o n s t r u c t o r s , m e t h o d s " />

107 < taglet name= " d e . r u b . a s t r o . u t i l . t a g l e t . T o D o T a g l e t " />

108 < taglet name= " d e . r u b . a s t r o . u t i l . t a g l e t . C h a n g e s T a g l e t " />

109 < taglet name= " d e . r u b . a s t r o . u t i l . t a g l e t . J U n i t T a g l e t " />

110 < taglet name= " d e . r u b . a s t r o . u t i l . t a g l e t . E x a m p l e T a g l e t "

111 path= " $ { T A R G E T _ D I R } " />

112 </javadoc>
113 <javadoc classpathref= " J A V A D O C _ C L A S S _ P A T H "

114 access= " p r i v a t e "

115 sourcepath= " $ { S O U R C E _ D I R } "

116 additionalparam= " - p d f  l c s p _ a p i _ d o c u m e n t a t i o n . $ { D S T A M P } _ $ { T S T A M P } .

p d f "

117 maxmemory= " 5 1 2 m " >

118 <packageset dir= " $ { S O U R C E _ D I R } " >

119 < include name= " d e / r u b / a s t r o / * * " />

120 </packageset>
121 <doclet name= " c o m . t a r s e c . j a v a d o c . p d f d o c l e t . P D F D o c l e t "

122 pathref= " D O C L E T _ P A T H " >

123 </doclet>
124 </javadoc>
125 </target>
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All information needed to compile the software is specified in the listing of the following
target.

126 <target description= " c o m p i l e  t h e  s o u r c e "

127 name= " c o m p i l e "

128 depends= " c l e a n " >

129 <tstamp /> <!-- Create the time stamp -->

130 <javac srcdir= " $ { S O U R C E _ D I R } "

131 destdir= " $ { T A R G E T _ D I R } "

132 classpathref= " C O M P I L A T I O N _ L I B R A R I E S "

133 target= " 1 . 6 "

134 source= " 1 . 6 "

135 optimize= " o n "

136 deprecation= " o n "

137 debug= " t r u e " />

138 </target>

To allow remote method access the stubs of the remote objects need to be generated.
With Java 1.5 the creation of skeletons is no longer required. The next target specifies the
parameters of the RMI-compiler (rmic). This generation of stubs is depending on existing
compiled classes.

139 <target description= " c r e a t e  s k e l e t o n s  a n d  s t u b s "

140 name= " r m i c "

141 depends= " c o m p i l e " >

142 <rmic base= " $ { T A R G E T _ D I R } " includes= " * * / R M I * I m p l . c l a s s " />

143 </target>

The next target is used to generate a deployable version of the control software. Therefore
the software is compiled, the stubs are generated and the resource files are copied to
the target folder. After the depending tasks have been executed the export directory is
prepared and the distribution is bundled in a JAR-file.

144 <target description= " g e n e r a t e  t h e  d i s t r i b u t i o n "

145 name= " b u i l d _ d i s t r i b u t i o n "

146 depends= " c o m p i l e , r m i c , c o p y - r e s o u r c e s " >

147 <mkdir dir= " $ { D I S T R I B U T I O N _ D I R } " />

148 <delete dir= " $ { E X P O R T _ D I R } " failonerror= " f a l s e " />

149 <mkdir dir= " $ { E X P O R T _ D I R } " />

150 <mkdir dir= " $ { E X P O R T _ D I R } / $ { E X P O R T _ L I B _ D I R } " />

151 <mkdir dir= " $ { E X P O R T _ D I R } / l o g " />

152 < jar jarfile= " $ { D I S T R I B U T I O N _ D I R } / $ { A P P L I C A T I O N _ N A M E } . $ { D S T A M P } _ $ { T S T A M P } .

j a r "

153 basedir= " $ { T A R G E T _ D I R } " >

154 <manifest>
155 <attribute name= " B u i l t - B y "

156 value= " $ { u s e r . n a m e } " />

157 <attribute name= " S p e c i f i c a t i o n - T i t l e "

158 value= " L u c i f e r  C o n t r o l  S o f t w a r e  P a c k a g e " />

159 <attribute name= " S p e c i f i c a t i o n - V e r s i o n "

160 value= " S a t u r n " />

161 <attribute name= " S p e c i f i c a t i o n - V e n d o r "

162 value= " A s t r o n o m i s c h e s  I n s t i t u t  R u h r - U n i v e r s i t a e t  B o c h u m " />

163 <attribute name= " I m p l e m e n t a t i o n - T i t l e "

164 value= " L u c i f e r  C o n t r o l  S o f t w a r e  P a c k a g e " />

165 <attribute name= " I m p l e m e n t a t i o n - V e r s i o n "

166 value= " $ { D S T A M P } / $ { T S T A M P } " />

167 <attribute name= " I m p l e m e n t a t i o n - V e n d o r "

168 value= " A s t r o n o m i s c h e s  I n s t i t u t  R u h r - U n i v e r s i t a e t  B o c h u m " />

169 <attribute name= " M a i n - C l a s s "

170 value= " d e . r u b . a s t r o . l u c i f e r . u s e r I n t e r f a c e . g u i . t o o l . s t a r t . S t a r t " />

171 <attribute name= " C l a s s - P a t h "

172 value= " $ { J A R _ C L A S S _ P A T H } " />

173 </manifest>
174 </ jar >
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Together with all basic configuration files this JAR-file is compressed to a ZIP file with a
representative time stamp in its name. This file contains all data to run the software and
can be easily distributed within the LUCIFER team.

175 <copy tofile= " $ { E X P O R T _ D I R } / $ { A P P L I C A T I O N _ A R C H I V E } "

176 file= " $ { D I S T R I B U T I O N _ D I R } / $ { A P P L I C A T I O N _ N A M E } . $ { D S T A M P } _ $ { T S T A M P } . j a r " />

177 <copy todir= " $ { E X P O R T _ D I R } " >

178 < f i l e s e t dir= " $ { C O N F I G _ D I R } " >

179 < include name= " s t a r t . x m l " />

180 < include name= " c o n f i g . x m l " />

181 < include name= " j a v a . p o l i c y . a l l " />

182 <exclude name= " $ { H I B E R N A T E _ C O N F I G _ F I L E } " />

183 <exclude name= " $ { L O G 4 J _ C O N F I G _ F I L E } } " />

184 </ f i l e s e t >
185 </copy>
186 <copy todir= " $ { E X P O R T _ D I R } " >

187 < f i l e s e t dir= " $ { b a s e d i r } " >

188 < include name= " u p d a t e . * " />

189 </ f i l e s e t >
190 </copy>
191 <copy todir= " $ { E X P O R T _ D I R } / $ { E X P O R T _ L I B _ D I R } " >

192 < f i l e s e t dir= " $ { L I B R A R Y _ D I R } " >

193 < include name= " * * . j a r " />

194 <exclude name= " $ { T O O L S . J A R } " />

195 <exclude name= " $ { P D F _ D O C L E T . J A R } " />

196 </ f i l e s e t >
197 </copy>
198 <copy todir= " $ { E X P O R T _ D I R } / $ { E X P O R T _ L O O K U P T A B L E _ D I R } " >

199 < f i l e s e t dir= " $ { L O O K U P T A B L E _ D I R } " >

200 < include name= " * * . x m l " />

201 </ f i l e s e t >
202 </copy>
203 < jar basedir= " $ { E X P O R T _ D I R } "

204 jarfile= " $ { D I S T R I B U T I O N _ D I R } / $ { A P P L I C A T I O N _ N A M E } . $ { D S T A M P } _ $ { T S T A M P } .

z i p " />

205 </target>

The last target builds a deployable version of the software and the corresponding API-
documentations files. This is done by simply calling the target that build the software and
generate the documentation.

206 <target description= " g e n e r a t e s  t h e  d i s t r i b u t i o n  a n d  t h e  d o c u m e n t a t i o n "

207 name= " b u i l d _ a l l "

208 depends= " b u i l d _ d i s t r i b u t i o n , j a v a D o c " />

209 </project>

With merely 200 lines of code this Ant build file controls the whole build process of the
LCSP. This demonstrates how powerful the Ant tool is and how easy a configuration file
can be composed. The power of the Ant tool lies in its predefined tasks that just need to
be configured accordingly. Instead of writing platform dependent shell scripts that initiate
the individual command calls Ant provides an independent build process specification
approach.
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The LCSP JavaDoc Annotations

Documenting software is one of the most important tasks in software development projects.
Thus the LUCIFER project started with the development of an appropriate documentation
procedure in advance of writing source code. It was decided to use the JavaDoc tool for
the task of generating the API-documentation. The JavaDoc tool is part of the Java
Software Development Kit (SDK) of SUN. This tool provides functionalities to generate
a comprehensive API-documentation out of the source code itself. This documentation is
by default stored as browsable HTML pages. To comply with user-defined requirements
the JavaDoc tool can be extended by writing individual Taglets to interpret additional
documentation annotations. For the LUCIFER project several Taglets have been written.

The JavaDoc tool automatically scans the source code of a project and analyses the
individual class structures and their dependencies. Additionally documentation tags that
are embedded in the source code are evaluated. These tags can be used e.g., to describe
the parameter of a method or its return value. See Listing D.1 and the generated HTML
documentation (Figure D.1) for an example of using JavaDoc annotations. By using special
Doclets, JavaDoc can generate e.g., a PDF documentation with several thousand pages.

In the LUCIFER project the following tags with their project specific purpose has been
used. They can be divided into project specific and and default JavaDoc annotations.

@author A general tag that is used to assign a person to a class or interface. In the
LUCIFER project the authors of a source file are sorted by their responsibility. This
allows to identify the persons to ask for bug-fixing or additional information on using
the code.

@version Another default Java tag to record the current version of a source file. This ver-
sion tag contains the date of the last major change instead of a common Java version
number. Minor changes to the source are documented by the version management
system (see Section 2.3).

@since This tag is used to store the date a class, interface or method was created first,
instead of a common Java version number.

@changes This tag is a very project specific JavaDoc annotation. A special Taglet class
has been written to support the logging of a change history and export it in a
formatted way to the API-documentation. This reduces the necessity of accessing
the version management system to retrieve a change history. Another benefit is
that the source itself contains its history and minimises the possibility of loosing it
when changing the version management system. This sepcialised tag can be used for
classes, interfaces and methods.
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@see A default JavaDoc annotations to refer onto another class, interface or method. This
references may be used to point to helpful descriptions of other source elements.

@deprecated Deprecated classes, interfaces or methods can be marked with this tag.
Further use of elements with this annotation is discouraged. This elements still exist
to ensure interoperability with other source code and may me removed in the future.
In the LUCIFER project this tag that belongs to the default JavaDoc annotations
is rarely used at the moment. With future version and major changes this tag will
be used more often. Finally, after a major change has been applied the deprecated
elements may be removed from the source including the tag itself.

@param This default tag is used to describe the parameters of a constructor or a method.
It is used to specify addition information concerning the use of a parameter.

@return A standard annotation to describe the return value of a method. Especially for
complex data structures an extensive description may be very helpful.

@throws The exception handling is one of the remarkable benefits of Java. To add com-
prehensive information to the API-documentation the error behaviour of a method
can be described by this default tag. All possible exception that can occur can be de-
scribed including the reason of their appearance. To know the exception declaration
is essential to use a method and react accordingly onto an error.

@pre This project internal tag is used to document any kind of pre-conditions to be
considered when calling a method. This may be e.g., the initialisation of a data
structure in advance or the existence other objects to communicate with. Together
with the exception handling information the pre-conditions are essential for calling
a method accordingly.

@post Another project internal tag is available to document the post-conditions of a
method call. This information may be helpful to understand the internal actions
of a method that do not belong to its primary task (e.g., a data structure being
initialised/modified or a motion command being transmitted).

@testcase This project specific JavaDoc annotation is based on an individual Taglet
class, written to allow the coupling between a class and its JUnit test case.

@todo An individual Taglet class allows to add missing programming tasks to the docu-
mentation. This tasks are most often nice to have but not essential for a functional
software. This annotation is project specific and does not belong to the default
JavaDoc annotations.

@example The most complex tag can be used to specify examples on how to use a
class/method. This project specific Taglet was written to add formatted source code
examples to the API-documentation. This examples can be very helpful to under-
stand how to integrate functionalities of existing code. Especially in projects with
several developers that may change within time these examples reduce the period of
vocational adjustment. There is no need to spend time on searching for corresponding
source parts in other files.
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Listing D.1: TimeClient.java (JavaDoc Annotation Example)

15 /**

16 * This class provides a client to the time server. It is used from the

17 * TimeStamp class to retrieve a synchronized time. Its get -method returns the

18 * current time in milliseconds since 1.1.1970 corrected by the correction term

19 * @author Kai Polsterer & Marcus J&uuml;tte

20 * @since 30.04.2003

21 * @changes 30.04.2003 adding {@link #getTime ()}

22 * @changes 31.10.2003 changing {@link #getTime ()} to use time server for

23 * synchronisation.

24 * @changes 31.10.2003 adding {@link #correctionTerm}, {@link #synchron}

25 * {@link #run()}, {@link #getCorrectionTerm ()}, {@link #isSynchron ()}

34 /* @version 31.08.2004

35 * @example Using the TimeClient.

36 * import de.rub.astro.util.time.TimeClient;

37 *

38 * public class Tester {

39 * public static void main (String [] args) {

40 * TimeClient.getClient ().sync(); // synchronize with the server

41 * long currentTime = TimeClient.getClient ().getTime (); // gets the time

42 * }

43 * }

44 */

45 public class TimeClient extends ActivatableRemoteServiceClientImpl

46 implements Runnable , Debug , TimeObserver {

97 /**

98 * Initialises a new <code >TimeClient </code > object by setting the

99 * attributes to their initial values.

100 * @since 11.12.2003

101 * @param registryAddress address of the registry hosting the service this

102 * client is used to connect to.

103 * @param serviceName the name of the service at the registry.

104 * @param timeService the <code >RMITimeService </code > the client should be

105 * used for. If this parameter is not specified the <code >RMITimeService

106 * </code > is retrieved by using the service information.

107 * @throws IllegalArgumentException if the <code >serviceName </code > is null

108 * or empty or the <code >registryAddress </code > is null , has no port

109 * specified or has no protocol.

110 */

111 public TimeClient(Address registryAddress , String serviceName , RMITimeService

timeService) throws IllegalArgumentException {

119 /**

120 * This method returns the current system time in milliseconds since 1.1.1970

121 * GMT 0:00 corrected by the <code >correctionTerm </code >. The <code >

122 * correctionTerm </code > represents the time difference between the time

123 * server and this client.<br>

124 * If the time client could not synchronize with the time server the value

125 * returned is negative.

126 * @return current time in milliseconds since 1.1.1970 GMT 0:00. If not

127 * synchronized with the time server this value is multiplied with -1.

128 * @see java.lang.System#currentTimeMillis ()

129 * @since 30.04.2003

130 */

131 public long getTime ()
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The LCSP Hibernate Configura-
tion and Mapping File Example

To use the Hibernate framework to persist data of objects into a relational database a
configuration and the mappings of each class need to be specified. The following sources
provide a short example on how to do this. The presented mapping and configuration are
taken from the LCSP. This mapping was actually the first mapping created. All other
mappings of system status objects have the same complexity and are comparably assem-
bled by using this mapping as a draft. Before starting to describe a mapping and the
mapped class, the Hibernate configuration is discussed.

The Hibernate configuration file (see Listing E.1) is needed to configure the behaviour
of the session factory. It starts with the specification of the database connection. These four
properties define the database driver/address, the database user and the password to use.
The next property is used to limit the size of connections that are managed by Hibernate
to one. This parameter can be used to optimise the systems performance. Because Hiber-
nate is able to communicate with different relational database implementations the next
property is needed to specify the database dialect. The next property binds the execution
of SessionFactory.getCurrentSession() onto the calling thread. After disabling the second
level object cache and the SQL statement display the table creation policy is specified. By
using create instead of update each software restart would empty the database. Finally the
Hibernate configuration file contains the links to the mapping files of the individual classes.
To improve the readability of the listing the path information has been truncated. The full
path points to the same location where the relevant source code files can be found e.g.,
<de/rub/astro/lucifer/instrument/mosUnit>. The first mapping that was created is
presented as an example in Listing E.2.

To fully understand this mapping the corresponding Java class needs to be known. List-
ing E.3 shows the essentials of the class that belong to the mapping presented in Listing
E.2. The extended class JournalizerObject inherits a simple TimeStamp and Journal-
izerKey attribute. These attribute are needed to identify logged instrument parameters
(see Section 5.5).

A Hibernate mapping contains entries for each class that should be mapped. In our
example the mapping specifies just one class. Besides the fully qualified class name the table
where the InstrumentTemperatures are stored is specified. Inside this class definition first
of all the unique identifier that is used to reference an object in the instrument temperature
table is defined. Therefore the type and the method of generation is entered. In this case a
numeric identifier that is created by the database is chosen. The attributes inherited from
JournalizerObject are sub-components of the InstrumentTemperatures class. The access
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of Hibernate onto this attributes is specified by using the access value of either a property
or component tag. A direct field access allows to directly interact with the attributes
without get and set methods. Additionally to this direct access Hibernate provides two
other possibilities. These are property access with get and set methods as well as custom
definable access. For each sub-component of a class their type and name needs to be
declared. Attributes of a sub-component are defined equal to direct attribute. For each
of these properties their Java source name, access style and the name of the database
table column to store the data in should be given. In some cases it is useful to specify the
database data type.

In the InstrumentTemperatures class (see Listing E.3) all important data is stored
within an array of floating point numbers. This primitive array is reproduced in a sep-
arate table. The primary identifier of this extra table is used in the main table to find
the corresponding array, while the index column references the individual entries. In the
LUCIFER project relatively simple data structures needed to be mapped. Nonetheless the
complexity to map larger data structures with Hibernate is still negligible in comparison
to compose and integrate plain SQL statements into software.

Listing E.1: hibernate.cfg.xml (Hibernate Configuration File)

1 <?xml version= ’ 1 . 0 ’ encoding= ’ u t f - 8 ’?>

2 <!DOCTYPE hibernate -configuration PUBLIC " - / / H i b e r n a t e / H i b e r n a t e  C o n f i g u r a t i o n  

D T D  3 . 0 / / E N " " h t t p : / / h i b e r n a t e . s o u r c e f o r g e . n e t / h i b e r n a t e - c o n f i g u r a t i o n - 3 . 0 .

d t d " >

3 <hibernate -configuration >

4 <session -factory >

5 <property name= " c o n n e c t i o n . d r i v e r _ c l a s s " >com.mysql.jdbc.Driver </property >

6 <property name= " c o n n e c t i o n . u r l " >

7 jdbc:mysql: //127.0.0.1/ instrument </property >

8 <property name= " c o n n e c t i o n . u s e r n a m e " >guessWho </property >

9 <property name= " c o n n e c t i o n . p a s s w o r d " >secret </property >

10 <property name= " c o n n e c t i o n . p o o l _ s i z e " >1</property >

11 <property name= " d i a l e c t " >

12 org.hibernate.dialect.MySQLInnoDBDialect </property >

13 <property name= " c u r r e n t _ s e s s i o n _ c o n t e x t _ c l a s s " >thread </property >

14 <property name= " c a c h e . p r o v i d e r _ c l a s s " >

15 org.hibernate.cache.NoCacheProvider </property >

16 <property name= " s h o w _ s q l " >false</property >

17 <property name= " h b m 2 d d l . a u t o " >update </property >

18 <mapping resource= " . . . / I n s t r u m e n t T e m p e r a t u r e s . h b m . x m l " />

19 <mapping resource= " . . . / R e a d O u t C o n t r o l T e m p e r a t u r e s . h b m . x m l " />

20 <mapping resource= " . . . / R a c k C o n t r o l V a l u e s . h b m . x m l " />

21 <mapping resource= " . . . / P r e s s u r e s . h b m . x m l " />

22 <mapping resource= " . . . / P r e s s u r e . h b m . x m l " />

23 <mapping resource= " . . . / T u r b o P u m p V a l u e s . h b m . x m l " />

24 <mapping resource= " . . . / C a l i b r a t i o n U n i t S t a t u s . h b m . x m l " />

25 <mapping resource= " . . . / G r a t i n g U n i t S t a t u s . h b m . x m l " />

26 <mapping resource= " . . . / F i l t e r U n i t S t a t u s . h b m . x m l " />

27 <mapping resource= " . . . / C a m e r a U n i t S t a t u s . h b m . x m l " />

28 <mapping resource= " . . . / D e t e c t o r U n i t S t a t u s . h b m . x m l " />

29 <mapping resource= " . . . / C o m p e n s a t i o n M i r r o r S t a t u s . h b m . x m l " />

30 <mapping resource= " . . . / A l i g n m e n t M i r r o r S t a t u s . h b m . x m l " />

31 <mapping resource= " . . . / P u p i l V i e w e r S t a t u s . h b m . x m l " />

32 <mapping resource= " . . . / M O S U n i t S t a t u s . h b m . x m l " />

33 </session -factory >

34 </hibernate -configuration >
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Listing E.2: InstrumentTemperatures.hbm.xml (Hibernate Mapping File)

1 <?xml version= " 1 . 0 " ?>

2 <!DOCTYPE hibernate -mapping PUBLIC " - / / H i b e r n a t e / H i b e r n a t e  M a p p i n g  D T D  3 . 0 / / E N "

" h t t p : / / h i b e r n a t e . s o u r c e f o r g e . n e t / h i b e r n a t e - m a p p i n g - 3 . 0 . d t d " >

3 <hibernate -mapping >

4 <class table= " I n s t r u m e n t _ T e m p e r a t u r e s "

5 name= " d e . r u b . a s t r o . l u c i f e r . c o n t r o l . t e m p e r a t u r e M o n i t o r .

I n s t r u m e n t T e m p e r a t u r e s " >

6 <id column= " I D "

7 type= " l o n g " >

8 <generator class= " n a t i v e " />

9 </id>

10 <component name= " t i m e S t a m p "

11 class= " d e . r u b . a s t r o . u t i l . t i m e . T i m e S t a m p "

12 access= " f i e l d " >

13 <property name= " t i m e "

14 column= " T I M E "

15 type= " l o n g "

16 access= " f i e l d " />

17 <property name= " s y n c h r o n "

18 column= " S Y N C H R O N "

19 type= " t r u e _ f a l s e "

20 access= " f i e l d " />

21 </component >

22 <component name= " j o u r n a l i z e r K e y "

23 class= " d e . r u b . a s t r o . l u c i f e r . j o u r n a l i z e r . J o u r n a l i z e r K e y "

24 access= " f i e l d " >

25 <property name= " u s a g e T y p e "

26 column= " U S A G E _ T Y P E "

27 type= " i n t "

28 access= " f i e l d " />

29 </component >

30 <primitive -array name= " t e m p e r a t u r e s "

31 table= " I n s t r u m e n t _ T e m p e r a t u r e s _ A r r a y "

32 access= " f i e l d " >

33 <key column= " T E M P _ I D " />

34 <index column= " S E N S O R _ N U M B E R " />

35 <element column= " T E M P E R A T U R E " type= " f l o a t " />

36 </primitive -array>

37 </class>

38 </hibernate -mapping >

Listing E.3: InstrumentTemperatures.java (Java Source File)

27 public class InstrumentTemperatures extends JournalizerObject implements
TemperatureMonitorDefaults , Serializable , UsageTypes ,

JournalizerObjectTypes {

34 /*

35 * Stores the temperature values.

36 * @since 24.09.2004

37 */

38 private f loat [] temperatures;
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Spectra of the Earth’s telluric fea-
tures at Kitt Peak Observatory

The following high resolution (R = 40.000) spectra (Figure F.1) of the Earth’s atmosphere
show telluric features in the SZ, J , H and K band. These spectra of the sky at zenith
were taken with the Fourier Transform Spectrometer (FTS) at the National Solar Ob-
servatory (NSO)/Kitt Peak Observatory and processed by the National Science Founda-
tion (NSF)/National Optical Astronomy Observatory (NOAO). The original data is hosted
at ftp://ftp.noao.edu/catalogs/atmospheric_transmission/ (2009). To improve the
quality of presentation the spectra have been binned to contain ≈2,000 transparencies per
spectrum. The spectra clearly visualise the atmospheric windows for ground based NIR
observations.

The Kitt Peak Observatory is located close to the Mount Graham International Ob-
servatory (MGIO). Therefore the telluric features in the presented spectra can be used for
the wavelength calibration of LUCIFER observations. The relation between atmospheric
parameters like the amount of water vapour or the airmass and the strength of the telluric
features demands an attentive calibration.
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Figure F.1: Spectra of the Earth’s telluric features at Kitt Peak Observatory. From top to
bottom: SZ band, J band, H band, K band
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ric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release
7. MNRAS, pp. 201–+ (2011).

Page, T. QSO’s, the Brightest Things in the Universe (Quasi-Stellar Objects).
ASPL, 9:161–+ (1964).

Perry, W.E. Effective Methods for Software Testing. John Wiley & Sons, New
York, NY, USA (2006).

Pilone, D. and Pitman, N. UML 2.0 in a Nutshell. O’Reilly, Sebastopol, CA,
USA (2005).

Pogge, R.W., Atwood, B., Belville, S.R., Brewer, D.F., Byard, P.L., DePoy,
D.L., Derwent, M.A., Eastwood, J., Gonzalez, R., Krygier, A. et al. The
multi-object double spectrographs for the Large Binocular Telescope. In So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
volume 6269 (2006).
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1986-1995 Elsa-Brändström-Gymnasium, Oberhausen
1996-2003 Study of Computer Science at the TU Dortmund
06/2002 - 06/2003 Diploma thesis at Lehrstuhl 1, TU Dortmund and Astronomis-

ches Institut der Ruhr-Universität Bochum. Title: “Entwicklung
und Visualisierung eines virtuellen astronomischen Instruments”

06/2003 Diploma in Computer Science, grade A (with distinction)
since 2003 PhD thesis at the AIRUB

Conferences:

10/2003 ADASS XIII, Strasbourg, France
06/2004 SPIE Astronomical Instrumentation, Glasgow, Scotland
05/2006 SPIE Astronomical Instrumentation, Orlando, USA
09/2007 AG-Meeting on Cosmic Matter, Würzburg, Germany
06/2010 AstroInformatics 2010, Pasadena, USA
09/2010 AG-Meeting the Cosmos at High Resolution, Bonn, Germany
09/2011 AG-Meeting Surveys & Simulations, Heidelberg, Germany

Working Stays:

2004 - 2010 MPE (Garching) 12× 3-5 days
2003 - 2011 LSW (Heidelberg) 7× 2-4 days and several one-day visits
05/2005 Steward Observatory and LBT (Arizona, USA) (3 weeks)
08/2008 LBT (Arizona, USA) (5 weeks)

Grants:

11/2003 - 10/2006 Dissertation grant by the Klaus Tschira Stiftung (KTS)

223



224


	Preface
	I Introduction
	LUCIFER Instrument
	Large Binocular Telescope
	LBT Instrumentation
	LBC
	MODS
	LBTI
	LINC-NIRVANA
	PEPSI

	Instrument Parameters
	Optics
	Mechanics
	Electronics
	Control Computer
	Detectors

	Infrared Astronomy
	History
	Radiation Mechanisms
	Science


	Software Development
	Software Development Models
	Analysis and Design Phase
	Coding and Implementation Phase
	Testing and Verification Phase
	Other Important Development Tasks

	LUCIFER Software Development Model
	Integrated Development Environment
	Object Oriented Software
	History
	Java Programming Language



	II Control Software
	Control Software Basics
	Requirements
	Architecture of the LCSP
	Service Deployment and Software Start
	External and Utility Packages
	Hibernate
	Message Browser
	GEIRS
	Telescope Control Software
	JavaDoc

	Metrics
	Definition
	Tier Metrics


	System Tier
	Remote Service Framework
	Remote Method Invocation
	Remote Interfaces
	Remote Object Implementations
	Server Skeletons
	Remote Service Client Architecture

	Time Synchronisation Service
	Resource Management/Internationalisation
	Persistent Data Storage
	XML Transformation Framework
	Configuration Service
	Database Storage Framework

	Message Exchange Framework

	Control Tier
	Serial Communication Framework
	Control Electronics Services
	Command Analysing Framework
	MCU Service
	Switchbox Service
	HIRAMO Service

	Interfacing Services to External Packages
	Environment Supervising Services
	Calibration Unit Service
	Temperature Monitor/Control Services
	Other Services

	Journalizer

	Instrument Tier
	Sequencing Framework
	States
	Transitions
	Basic Transitions and States
	Sequences

	MOS Unit Service
	Mask Exchange
	Cabinet Exchange

	Other Services

	Operation Tier
	Managing the Instrument
	Observers Access
	Observer GUIs
	Observation Preparation

	The Engineer`s Access to the Instrument
	System Access
	Hardware Access
	Instrument Access
	MOS Unit GUI
	Cabinet Exchange Software


	LuciferVR
	Simulation Framework
	Virtual Instrument
	Control Software Integration
	Visualisation


	III Science with LUCIFER
	Observations of NGC1156
	NGC1156 Data Set
	NIR Data Reduction
	Standard Processing
	Data Set Problems
	Narrowband Image Processing

	Analysis of NGC1156
	Photometry
	Distance to NGC1156
	H2 Image Analysis


	Efficient Quasar Candidate Selection
	Panoramic Catalogues
	Redshift Estimation
	Previous Redshift Estimators
	kNN Regression Model
	Evaluation

	Photometric Selection of QSOs
	Previous Photometric Approaches
	QSO Selection
	Evaluation


	Conclusions And Outlook
	Acknowledgements

	Appendix
	LMC Configuration
	Service Program Arguments
	LCSP Ant Build File
	LCSP JavaDoc Annotations
	LCSP Hibernate Configuration
	Spectra of the Earth's Telluric Features
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Index
	Bibliography


