Types of Variability

I. Intrinsic Variability

Star variable "by itself" \rightarrow variability caused by physical changes of star

- pulsation variable
- Eruptive
- Rotationally induced variables

II. Extrinsic variability

Star not variable by "itself" \rightarrow variability generated by <u>external</u> influences

- Binary stars ↔ eclipsing variables
- Accretion disks ↔ like T Tauri
- binary+accretion disk ↔ cataclysmic variables, novae

Types of Variability

I. Intrinsic Variability

Star variable "by itself" \rightarrow variability caused by physical changes of star

pulsation variable

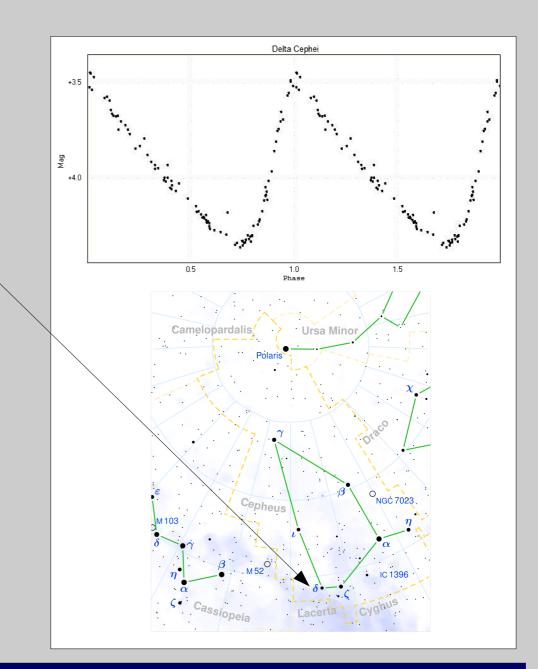
- Eruptive
- Rotationally induced variables

II. Extrinsic variability

Star not variable by "itself" \rightarrow variability generated by <u>external</u> influences

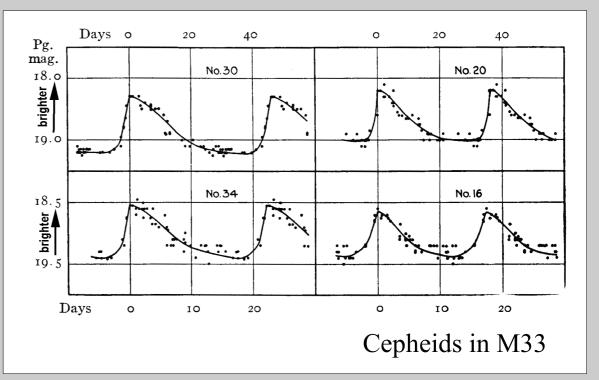
- Binary stars ↔ eclipsing variables
- Accretion disks ↔ like T Tauri
- binary+accretion disk ↔ cataclysmic variables, novae

Pulsation variable - Cepheids


discovery & observation:

biscovered by John Goodricke in 1784 in the constellation Cepheus

 $\delta \text{ Cephei} \rightarrow \text{prototype}$


pulsation variables - Cepheids

observation:

regular photometric variability

characteristic light curve rise and fall is <u>asymmetric</u>

Periods: 1 - 50 days $\Delta m \approx 0.1$ - 2 mag

Cepheids are divided into the following subtypes

- δ Cephei \leftrightarrow classic Cepheids \leftrightarrow Type I Cepheids
- Type II Cepheids
- Abnormal/Uncommon Cepheid
- Bimodal Cepheids

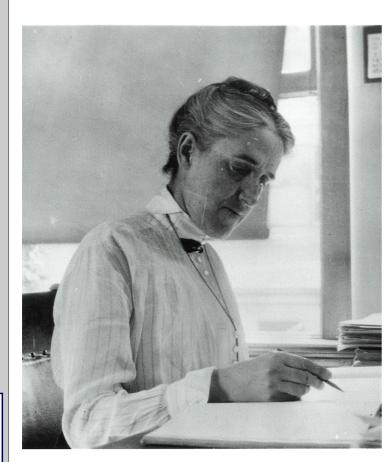
Note that the pulsation mechanism is always the same.

Henrietta Leavitt (1868 – 1921)

Was at first only employed in the computer devision to do calculations

showed a lot interested in astronomy

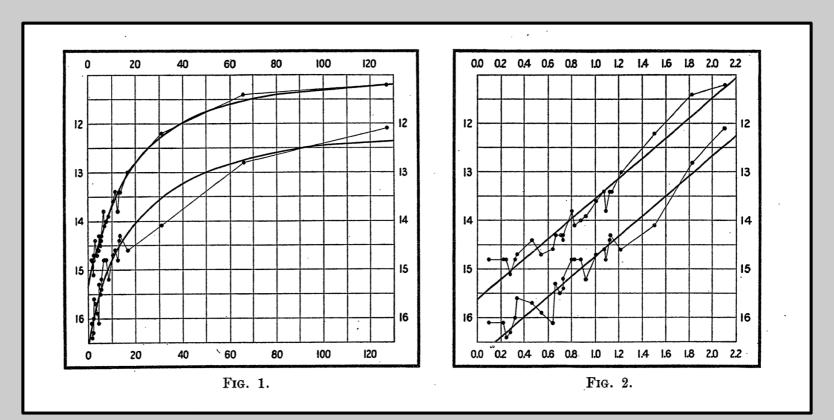
- graduated from Harvard University Radcliffe College in 1892
- Prof. E.C. Pickering gave her work at the Harvard College Observatory. Measurement of the brightness of stars on photoplates, leading to a catalog and list of variable stars.


" Pickering's Harem"

Leavitt continued to analyze the variable stars, e.g. those in the Large and Small Magellanic Clouds...

and then even wrote her own publication !!!

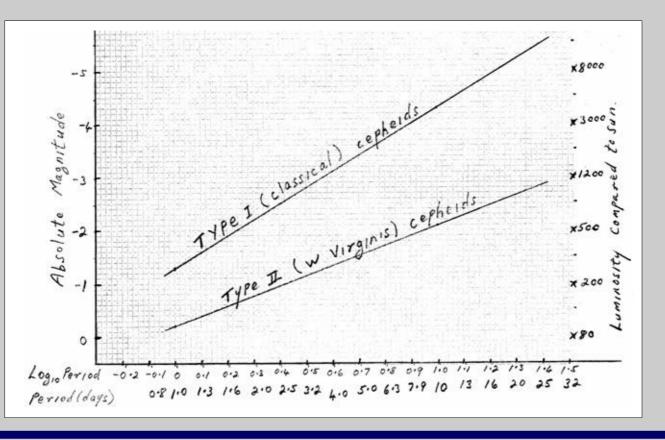
1777 VARIABLES IN THE MAGELLANIC CLOUDS.


BY HENRIETTA S. LEAVITT.

In the spring of 1904, a comparison of two photographs of the Small Magellanic Cloud, taken with the 24-inch Bruce Telescope, led to the discovery of a number of faint variable stars. As the region appeared to be interesting, other plates were examined, and although the quality of most of these was below the usual high standard of excellence of the later plates, 57 new variables were found, and announced in Circular 79. In order to furnish material for determining their periods, a series of sixteen plates, having exposures of from two to four hours, was taken with the Bruce Telescope the following autumn. When they arrived at Cambridge, in January, 1905, a comparison of one of them with an early plate led immediately to the discovery of an extraordinary number of new variable stars. It was found, also, that plates, taken within two or three days of each other, could be compared with equally interesting results, showing that the periods of many of the variables are short. The number thus discovered, up to the present time, is 969. Adding to these 23 previously known, the total number of variables in this region is 992. The Large Magellanic Cloud has also been examined on 18 photographs taken with the 24-inch Bruce Telescope, and 808 new variables have been found, of which 152 were announced in Circular 82. As much time will be required for the discussion of these variables, the provisional catalogues given below have been prepared.

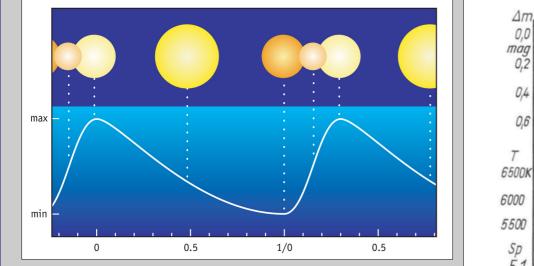
and then even wrote her own publication !!! She made a very **IMPORTANT discovery**

period-luminosity relation luminosity increases for longer periods

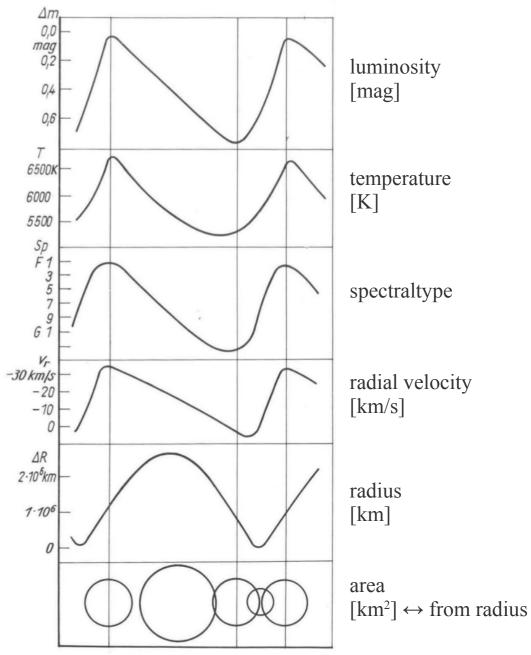

plots from Leavitt 1912 paper

Cepheiden – period-luminosity relation

→ obvious relationship between period and luminosity of the stars with different gradient for each type. This led to the introduction of several classes of Cepheids, at that time these were


Typ I or classical Cepheids

Typ II or according to the prototyp W Virginis Sterne



Pulsation – Cepheids

Parameters that change within a Pulsation cycle

pulsation variables - Cepheids

Theorie:

variability due to a regular pulsation of the star

- \leftrightarrow need a mechanism that leads to pulsation
- ↔ what causes the star to change its structure more precisely its radius

TIME FOR THE

KAPPA MECHANISM

к-mechanism

Remember star structure equations

Energy transport in the star radiative or convective depends on temperature, density, ... and
 κ ↔ opacity ↔ transmissivity of radiation

Energy Transport Equations

$$\frac{dT}{dr} = \frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{Lr}{4\pi r^2}$$
$$\frac{dT}{dr} = -\left(1 - \frac{1}{\gamma}\right)^{\mu} \frac{m_H}{k} \frac{GM}{r^2}$$

κ opacity \leftrightarrow radiation Transmittance

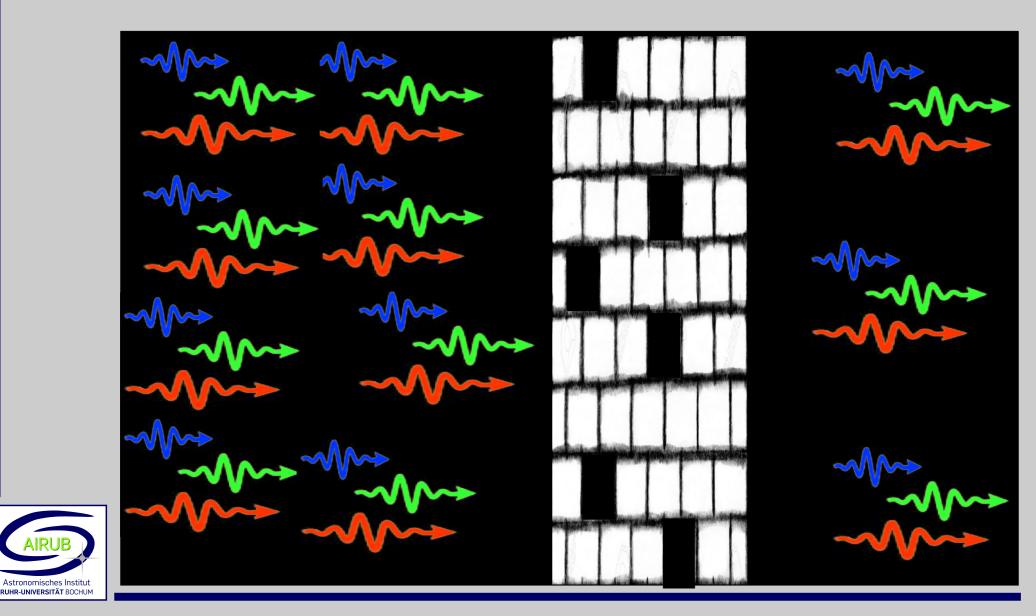
Radiation transmittance is essential for the stability of a star!

if the radiation transmission is reduced, the star reacts

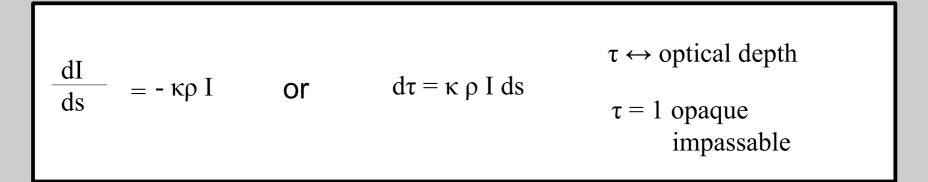
Heat accumulation = pressure increase ≠ hydrostatic equilibrium

So what changes the transmissivity of radiation the opacity in the star?

What is and what determines the opacity in stars?



opazity high


opazity low

Weakening of the transmissivity \rightarrow fewer photos pass the area here as an example of a holes in the wall

к opacity

$\label{eq:kappa} \kappa \leftrightarrow \textit{opacity} \\ \text{Is the transmittance of radiation} \leftrightarrow \\$

The radiation transmittance: The effective cross section of radiation with matter depends strongly on the physical process. A rough distinction is made between 2 classes

scattering processes

↔ Loss from "Changing Direction" & "Annihilation"

absoption processes

↔ loss from "<u>Annihilation</u>"

к opacity – physical mechnism

• Scattering bound - bound

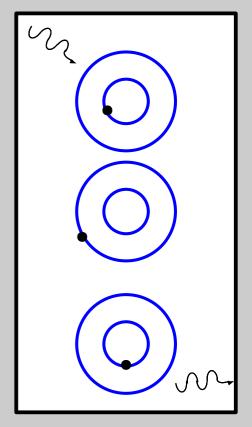
photon is absorbed \rightarrow electron to higher energy state

changes the direction of the photon

 \rightarrow not necessarily in the direction to the surface

Line transitions \rightarrow concrete energies/transitions \rightarrow strongly dependent on wavelength !!!

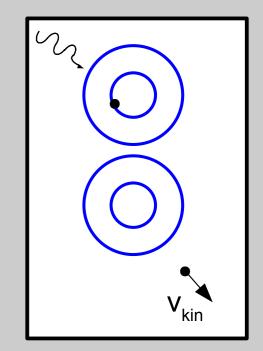
Temperature T


- determines number of transitions fully ionized \rightarrow no more transitions
- dtermines the radiation field (UV or IR \rightarrow number of transitions)

Metallicity Z

- determines number of transitions(iron versus helium)

at T > 10⁴ K, the transitions of the metals are the most important contribution \rightarrow very strongly dependent on metallicity !!!

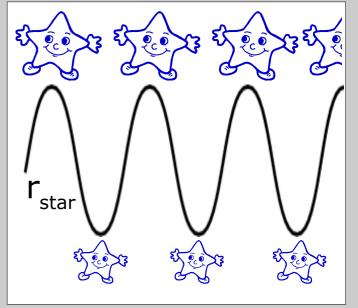

к opacity – physical mechnism

• Scattering bound - free

annihilation of the photon

- \rightarrow Energy goes into ionization and motion
- \rightarrow wide range of energies possible
- \rightarrow continuum

dependent but less strongly than "bound bound" on temperature T and metallicity Z


к-mechanism – instability

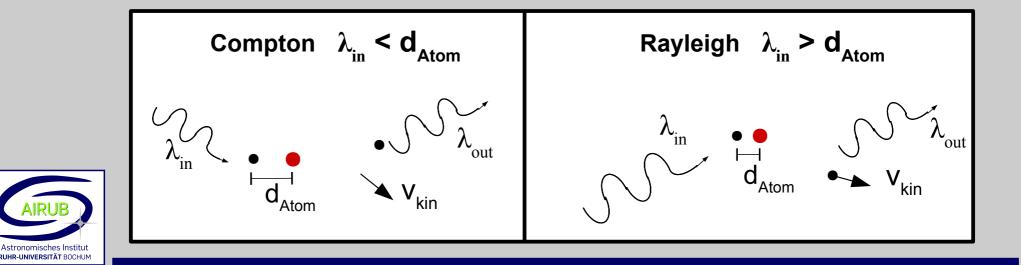
But how does pulsation come about?

If the temperature, composition, ionization state, density and/or pressure changes \rightarrow the <u>opacity changes</u>

- \rightarrow lower transmittance \leftrightarrow leads to heat accumulation
- \rightarrow expansion = temperature and radius larger \rightarrow star brighter
- \rightarrow expansion also $\rightarrow~$ reduction of heat accumulation
- → temperature and radius decreases again and star brightness decreases
- \rightarrow this changes the opacity
- ... the game starts all over again

 \rightarrow pulsation

 $L = 4 \pi \sigma r^2 T^4$


к opacity – physical mechnism

- electron Scattering Compton Scattering $\lambda_{in} < d_{Atom}$
- electron Scattering Rayleigh Scattering $\lambda_{in} > d_{Atom}$

Photon scattering with electron that is 'weakly bound to nucleus'

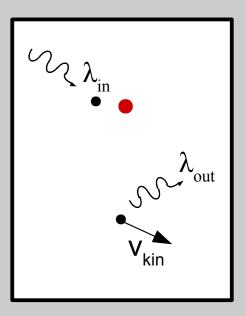
Photon has less energy and longer wavelength, electron receives kinetic energy, de facto goes with 'every photon' \rightarrow continuum

slightly dependent on temperature T \leftrightarrow since it determines the energies of the incident photons

к opacity – physical mechnism

d) free free absorption

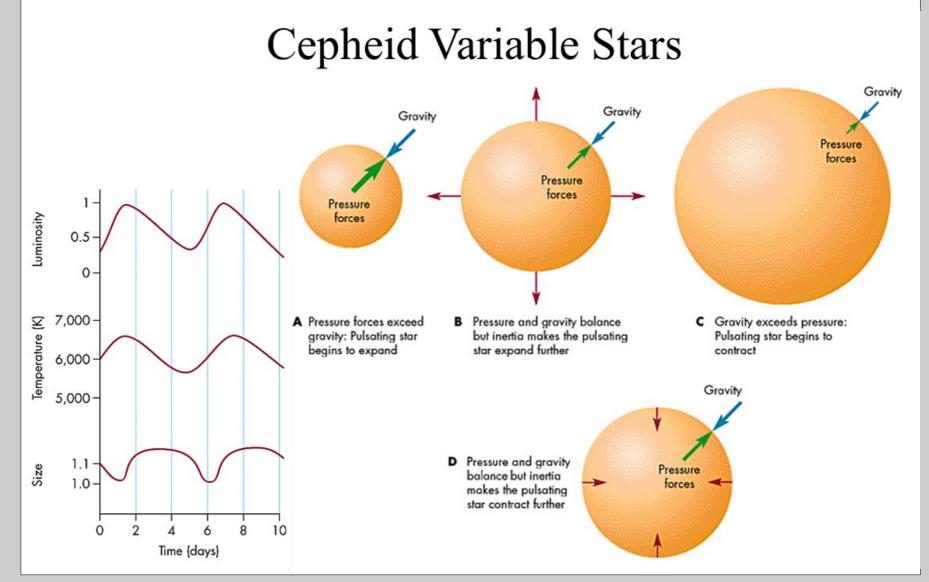
photon scattering with a unbound electron in the vicinity of a proton/ion


Photon transferes energy to the electron

- \rightarrow photon lower in energy and longer wavelength,
- \rightarrow electron receives kinetic energy

also works de facto with 'every photon' \rightarrow continuum

Slightly dependent on the Temperature T \leftrightarrow something since it reflects the energies of the incident photons (λ_{in})


Rossland mean Opazity

All of these processes prevent radiation from reaching the stellar surface. The individual amounts are different and dependent on **temperature** (\leftrightarrow radiation field), **Composition**, ionization state X = 0.7Z = 0.02 \leftrightarrow thus also **density** and **pressure**. To find the total opacity $\log_{10} \kappa \ (m^2 \ kg^{-1})$ $\kappa_{\text{Gesamt}} = \kappa_{\text{gebgeb}} \& \kappa_{\text{gebfrei}} \& \kappa_{\text{elektron}} \& \kappa_{\text{freifrei}}$ calculate a weighted mean is derived = Rossland mean free opacity $Log_{10} \rho$ (kg m⁻³⁾ -2 $\frac{1}{\kappa} = \frac{\int_0^\infty \kappa_\nu^{-1} u(\nu, T) d\nu}{\int_0^\infty u(\nu, T) d\nu}$ -3 5 4 6 $Log_{10} T(K)$ $u(\nu,T) = \partial B_{\nu}(T)/\partial T$

it depends on T, Z and ρ

Pulsation – Cepheids

graphic version of my words

к-Mechanismus – die Instabilität

The **depth structure** is **important**, i.e. how deep in the star does the accumulation of heat occur

too deep

 \rightarrow shell above too massive \rightarrow hardly moved and quickly dampened

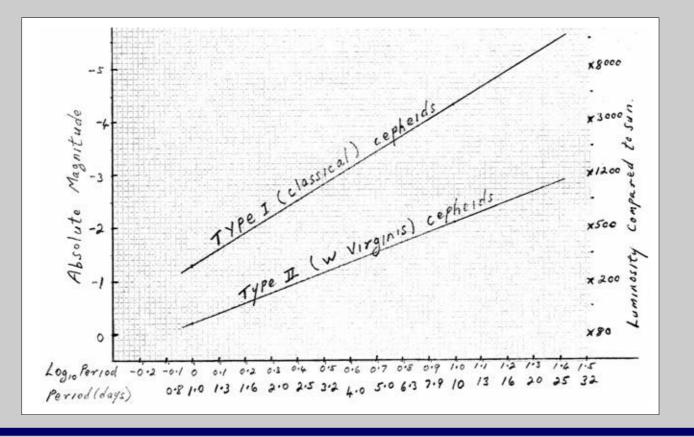
too high

- \rightarrow shell above too light hardly any mass that is moved
- \rightarrow possibly leave the gravitational field at the very first oscillation

What changes the opacity ?

Mechanisms known to date are based on a change in the ionization state.

- \rightarrow Change in free electrons \leftrightarrow free free
- \rightarrow Changing the transitions \leftrightarrow bound bound & bound free

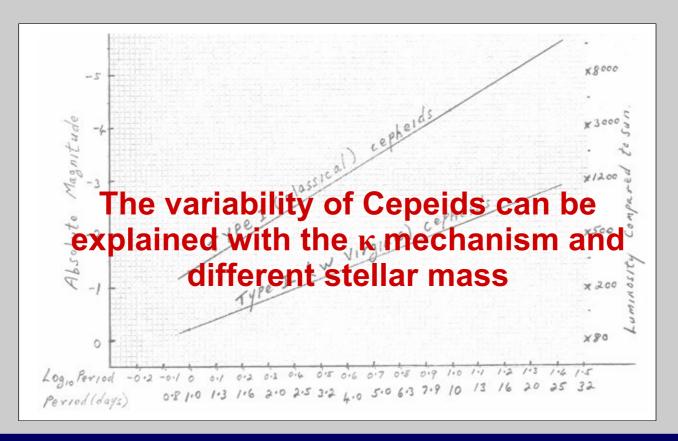


 \rightarrow obvious **relation** between **period** and **luminosity**

with different gradient for each type. This led to the introduction of several classes of Cepheids, at that time these were

Typ I or classic Cepheiden

Typ II or according to the prototype W Virginis Sterne



→ obvious relation between period and luminosity with different gradient for each type. This led to the introduction of several classes of Cepheids, at that time these were

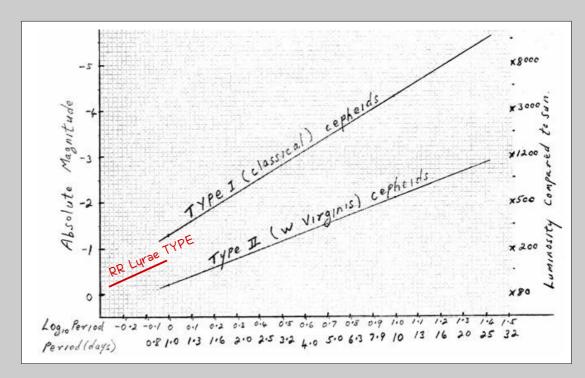
Typ I or classic Cepheiden

Typ II or according to the prototype W Virginis Sterne

... today we know more class

Depending on how deep the layer is, a more or less strong pulsation starts (\leftrightarrow temperature structures in the star \leftrightarrow HRD).

- a lot of mass above (\leftrightarrow star more massive)
 - \rightarrow small change in radius \rightarrow short period \rightarrow Luminosity change weak
 - → relation between period and luminosity can be explained by different stellar masses.


Therfore

δ Cepheids Typ I massive stars

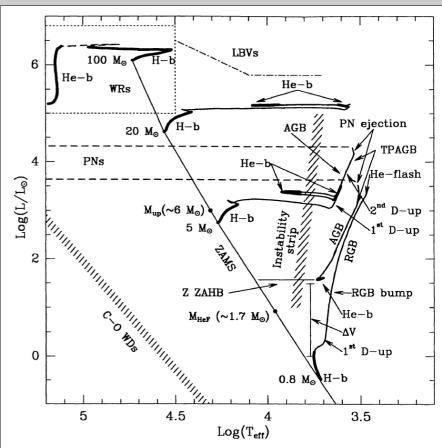
W Virginis stars Typ II low mass stars

RR Lyrae stars Horizontal branch stars

к-Mechanismus – Cepheiden

Why does the pulsation start? What triggest the mechnism

Stellar evolution

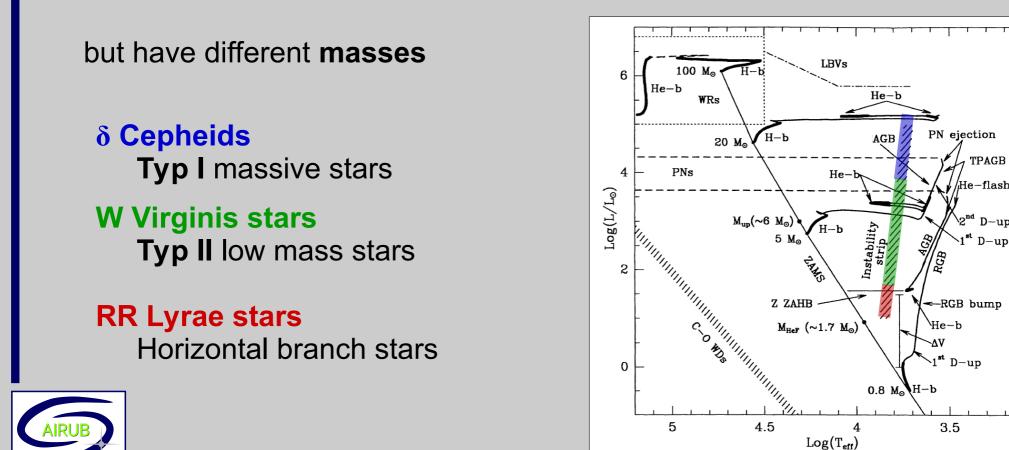

 \rightarrow changes in the stellar structure

 \rightarrow changes in temperature, density & ionization state and hence the **opacity**

For Chepheids it's a temperature change that leads Helium to go from a single lonized to double ionized state (He I \rightarrow HeII)

- \rightarrow this changes the opacity κ
- \rightarrow starts the κ mechanism
- \rightarrow initiates the pulsation of the star

Chepheids stars therefore all have similar **temperatures** when the pulsation starts – but have different **masses**



к-Mechanismus – Cepheiden

Chepheids stars therefore all have similar temperatures when the pulsation starts

 \rightarrow in the HRD all are on the instability strip

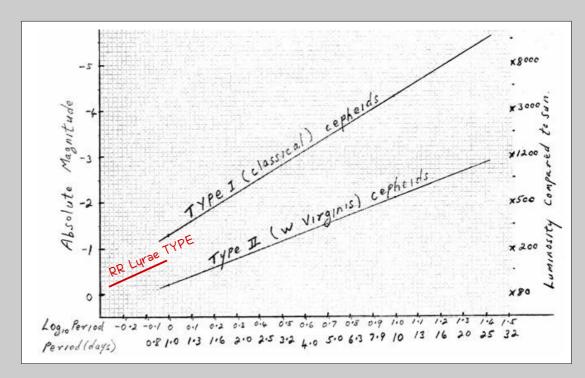
Astronomisches Institu RUHR-UNIVERSITÄT BOCHUM

D-up

D-up

Depending on how deep the layer is, a more or less strong pulsation starts (\leftrightarrow temperature structures in the star \leftrightarrow HRD).

- a lot of mass above (\leftrightarrow star more massive)
 - \rightarrow small change in radius \rightarrow short period \rightarrow Luminosity change weak
 - → relation between period and luminosity can be explained by different stellar masses.


Therfore

δ Cepheids Typ I massive stars

W Virginis stars Typ II low mass stars

RR Lyrae stars Horizontal branch stars

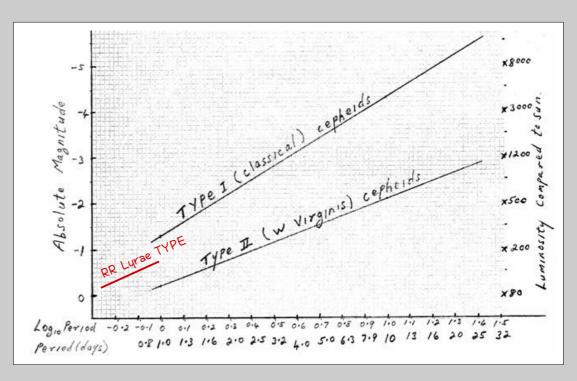
Cepheiden – Entferungsbestimmung

 \rightarrow Cepheids can be used for distance determinations

<u>Measurement</u>: Cepheid type, period, luminosity/brightness

<u>Method</u>: Comparison the 'actual brightness' with the brightness that is expected for period that was measured From the difference and the distance module

 $m - M = 5 \operatorname{mag} \cdot \log_{10} \left(\frac{r}{10 \operatorname{pc}} \right)$


 \rightarrow distance r

δ Cepheids Typ I massive stars

W Virginis stars Typ II low mass stars

RR Lyrae stars Horizontal branch stars

Baade – Populationen I & II

Walter Baade (1893-1960)

- studied in Munich and Göttingen
- worked at the observatory in Hamburg
- Mt. Wilson Observatory & Mt. Palomar
- Work on variable stars and structure of the Milky Way and galaxies
- found Cepheids in M31

 has divided the Cepheids (according to the gradient of the period luminosity function) into two populations Population I and II, therefore often the term Population I and II Cepheids instead of Type I and II

> Population I \leftrightarrow massive young star Population II \leftrightarrow low mass old stars

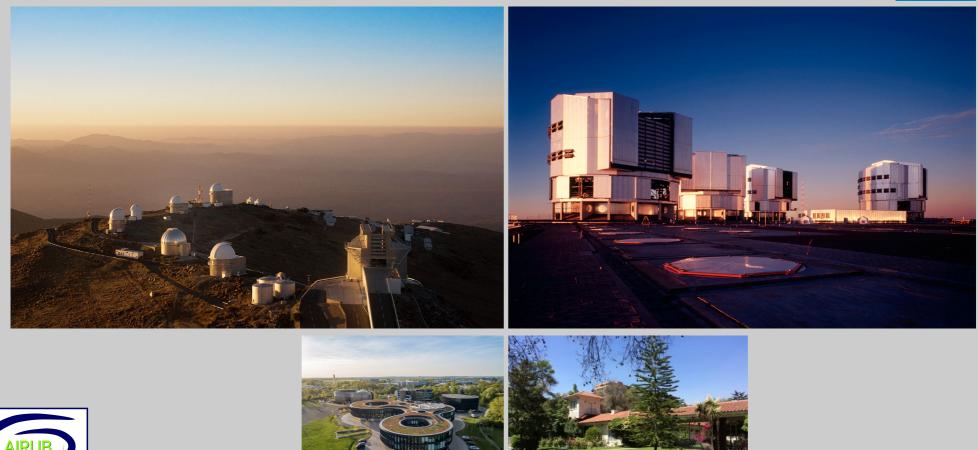
Baade – Population I & II

Walter Baade (1893-1960)

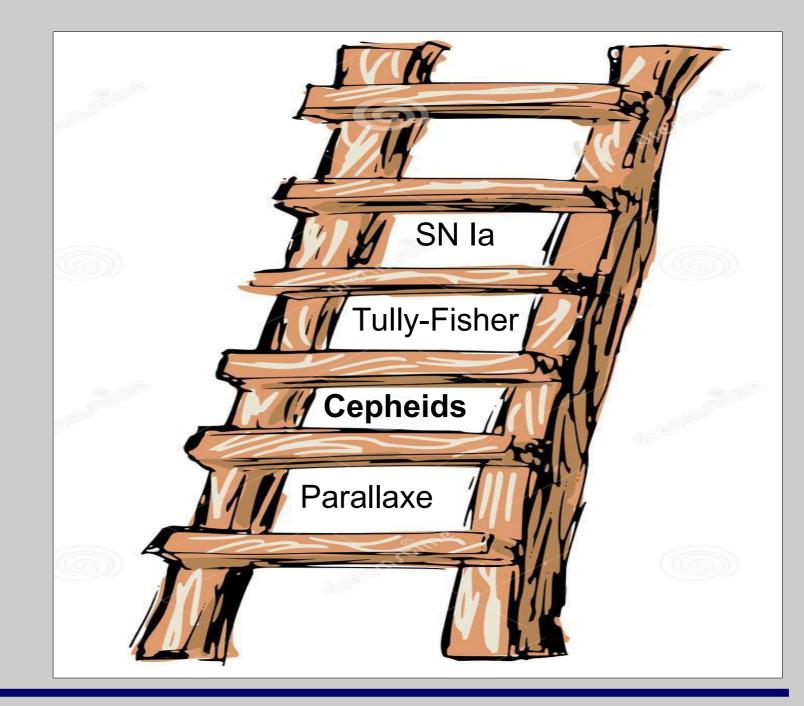
• Work on variable stars and structure of the Milky Way and galaxies

Population I ↔ massive young starPreferentially located in spiral armsPopulation II ↔ low mass old starsPreferentially located in the bulge

- Motivated and pursued the idea of a European observatory
 - → therefore an originator (father) of ESO


Baade – and ESO

Walter Baade (1893-1960)


Astronomisches Institut RUHR-UNIVERSITÄT BOCHUM

- Motivated and pursued the idea of a European observatory
 - \rightarrow therefore an originator (father) of ESO

Cepheids - important step of the distance ladder

But I am as constant as the northern star, Of whose true-fix'd and resting quality There is no fellow in the firmament.

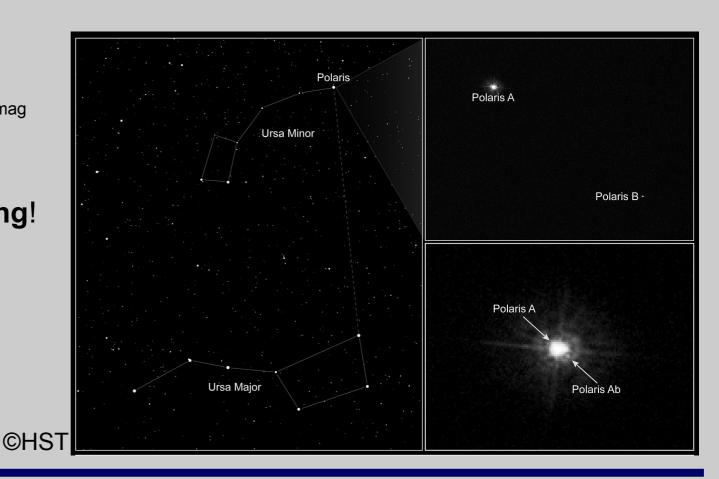
in William Shakespeare, Julius Caesar

Constant as the northern star...

Polaris $\leftrightarrow \alpha$ Ursae Minoris \rightarrow Polaris A

- visuel **binary** Polaris A and B (1780 Wilhelm Herschel)
- apparent distance from Polaris B (F3 V) is 18.4"
- Polaris A itself is also a **binary**: Polaris Aa (F7 lb) and Polaris Ab (F6 V) distance 0.17"

UND

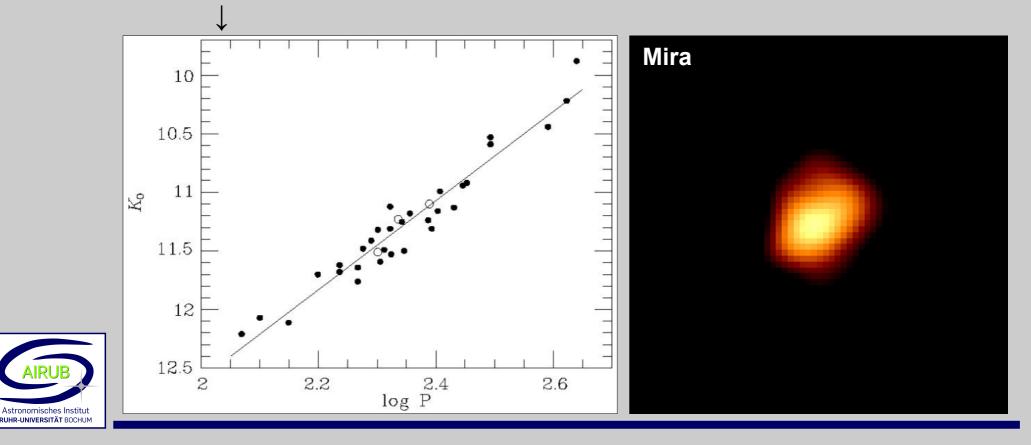

Polaris Aa is a
 Typ I Cepheid
 with m = 1.92 - 2.07^{mag}
 a period of 3.9 days,
 but the Pulsation
 amplitude is declining!

constant as the

northern star

]]]

Other pulsation variables


Mira Variable

Variability Mechanism:

Pulsation of **low-mass star**s in **AGB** phase **k-mechanism** here change in the **opacity** of e.g. He, titanium oxide

Long-**p**eriod **v**ariable \rightarrow LPVs

As with Cepheids luminosity periods relationship (for AGB in the red and IR range can be easily observed)

Weiter Pulsationsvariable mit ĸ-Mechnismus

α Cygni supergiant stars periods days to weeks and brightness changes around 0.1 mag

 β Cephei also knonwn as β Canis Majoris bekannt. Periods 0.1 – 0.6 days, brightness changes 0.01 – 0.3 mag

RV Tauri ↔ not T Tauri !!! Yellow supergiants Periods often 2 maxima 30 – 100 days, brightness changes 3-4 mag Existence of additional long-periodic (years) changes

Weiter Pulsationsvariable mit κ-Mechnismus

δ Scuti

also known as Dwarf Cepheids. like Cepheids with shorter periods 0.01 – 0.02 days and smaller magnitude changes 0.003 – 0.9 mag, spectral type A0 - F5

SX Phoenicis

Similar to δ Scuti, often in globular clusters Periods 1 – 2 hours, brightness changes 0.7 mag = ~ 100% Spectral type A2 - F5

Ap Variable

A subclass of δ Scuti, main sequence A Stars with strong rotation Periods therefore in the range of a few minutes, change in brightness 0.001 mag

Types of Variability

I. Intrinsic Variability

Star variable "by itself" \rightarrow variability caused by physical changes of star

- pulsation variable 🗸
- Eruptive
- Rotationally induced variables

II. Extrinsic variability

Star not variable by "itself" \rightarrow variability generated by <u>external</u> influences

- Binary stars ↔ eclipsing variables
- Accretion disks ↔ like T Tauri
- binary+accretion disk ↔ cataclysmic variables, novae

