

Priv.-Doz. Dr. Kerstin Weis Astronomisches Institut RUB

star formation

stellare parameters

stellar structure

What is a star

stellare parameters

What is a star

parameters

initial mass:
$$0.07 - 120 M_{\odot}$$

Luminosity:

Radius:

temperatur at surface ($\leftrightarrow T_{eff}$): temperatur in the core: lifetime: < (approximately) 7 M_{\odot} > (approximately) 7 M_{\odot}

 $10^{-2} - 10^{6} L_{\odot}$ $0.01 - 1000 R_{\odot}$ 3000 - 100000 K $10^{6} - 5 10^{9} K$ $10^{6} - 10 10^{9}$ years low mass stars massive stars

Hertzsprung-Russel-Diagram

Hertzsprung-Russel-Diagram

Stellar radii in the HRD

Innere Structure (main-sequence stars)

- a) low mass stars 0.08-0.26 M
- b) low mass stars up to 1.2 M_{\odot}
- c) low mass stars & massive stars above 1.2 M_{\odot}
- d) low mass stars & massive stars above 1.2 M_{\odot} with Rotation !

star formation

stellare parameters

stellar structure

What is a star

stellar structure

What is a star

stellar structure

stellar structure Vogt – Russell theorem

OKAY

stellar structure Vogt – Russell theorem

OKAY but UPDATES **Mass loss** \leftrightarrow **stellar winds** (dM/dt) **rotation** (v_{rot}) und **magnetic field** (B) are important !!!

mass continuity equation

 $m\coloneqq mass \quad A\coloneqq surface$

assumption the star is a **sphere** \rightarrow sounds trivial but isn't ! \rightarrow if a stars rotates fast it is an **ellipsoid** !

V = Adr sphere
$$\leftrightarrow$$
 A = $4\pi r^2$

$$\rho = \frac{M}{V} \rightarrow \frac{dm}{4\pi r^2 dr}$$

$$\frac{\mathrm{dm}}{\mathrm{dr}} = 4\pi r^2 \rho$$

more commonly used version

dm =
$$4\pi r^2 \rho dr$$

hydrostatic equilibrium

 F_{TP} from thermal pressure

 $F_{G} = m \times g \rightarrow dF_{G} = G \frac{M dm}{r^{2}}$

$$F_{TP} = A \times P \rightarrow dF_{TP} = AdP$$

m := mass P:= pressure A:= surface

mit density ρ = m/V = dm /A dr \rightarrow A= 1/ ρ dm/dr

balance of forces

energy equation

 $L \coloneqq Luminosity \quad \epsilon \coloneqq energy generation rate$

 $\rightarrow \epsilon = \epsilon_{\text{Nuklear}} + \epsilon_{\text{Gravitation}}$

 $dL = \varepsilon dm$

Using the mass continuity equation

dm = $4\pi r^2 \rho dr$

$$\frac{dL}{dr} = 4\pi r^2 \rho \epsilon$$

Stellar radii in the HRD

$$\frac{dL}{dr} = 4\pi r^2 \rho \epsilon$$

 \leftrightarrow

dL= $4\pi r^2 \rho \epsilon dr$

explains radius axis in HRD

energy transport equation

T := Temperature γ: c_p/c_v adiabtic coefficient κ = opazity

$$\frac{dT_{rad}}{dr} = -\frac{3}{4ac} \frac{\kappa\rho}{T^3} \frac{Lr}{4\pi r^2}$$

$$\frac{dT_{con}}{dr} = -\left(1 - \frac{1}{\gamma}\right)\frac{\mu m_{H}}{k}\frac{GM}{r^{2}}$$

sometimes written not as convective but adiabatic

$$\frac{dT_{ad}}{dr} = -\left(1 - \frac{1}{\gamma}\right)\frac{\mu m_{H}}{k}\frac{GM}{r^{2}}$$

radiativ

convectiv

energy transport equation

stellar structure equations

energy

generation

energy generation – nuclear burning process

Hydrogen burning the PP-chain(s)

(PP III)

energy generation – nuclear burning process

Hydrogen burning the CNO-cycle 4H \rightarrow He + 2e⁺ + 2v_e + 3 γ + Δ E

- \rightarrow 2 He + 3e⁺ + 3v_e + 5γ + Δ E
- $\Delta E = 25 \text{ MeV}$ $\epsilon \propto T^{15-16}$ $T \ge 1.5 \ 10^7 \text{ K}$

energy generation – nuclear burning process

Hydrogen burning the CNO-cycle 4H \rightarrow He + 2e⁺ + 2v_o + 3y + Δ E

 \rightarrow 2 He + 3e⁺ + $3v_e$ + 5 γ + Δ E

CNO cycle versus pp-chain

burning phases and stellar lifetimes

The **duration** of the H **buring phase** \leftrightarrow the by far longest buring process (= MS lifetime) for all stars and good total lifetime estimate.

It is **shorter** for a higher stellar **mass**.

$$\tau_{\rm MS} \approx 10^{10} {\rm years} \left[\frac{M}{M_{\bigodot}} \right] \left[\frac{L_{\bigodot}}{L} \right] = 10^{10} {\rm years} \left[\frac{M}{M_{\bigodot}} \right]^{-2.5}$$

H burning	$\leftrightarrow \mathbb{N}$	IS I	lifetime
$1 \mathrm{M}_{\odot}$	11	0 ¹⁰	years
$10 \mathrm{M}_{\odot}$	31	0^{7}	years
$50 { m M}_{\odot}$	61	0^{5}	years
$80 { m M}_{\odot}$	21	05	years

Helium burning

Helium-burning or Triple-a

3He \rightarrow C + γ + Δ E

 $\Delta E = 7.3 \text{ MeV}$ $\epsilon \propto T^{30-40}$ $T > 1.5 \ 10^8 \ K$

CNO cycle versus pp-chain

PP • **CNO** • **He** \leftrightarrow **Triple** α **burning**

Efficiency of the pp CNO and Triple α process

higher burning phases

Carbon-burning C + He \rightarrow O + γ + Δ E = 7.2 MeV

Oxygen-burning O + He \rightarrow Ne + γ + Δ E = 4.6 MeV

Neon and Silicon burnings follow and create elements up to Iron.

Massive Stars

Duration of burning phases

The duration of the each buring phase is shorter for higher elements and faster for stars with higher mass

able 3 Lifetimes of core burning phases		
burning phase	time in years	
H burning	10 ⁵⁻⁹ years	
He burning	10 ⁶ years	
O burning	300 years	
Ne burning	200 days	
Si burning	2 days	

Fusion versus Fission

Neon and Silicon burnings follow and create elements up to Iron. Iron has the highets binding energy per nucleon

→ up to iron energy is set free in Fusion processes beyond in Fission (spallation)

So what about gold und silver etc. ?

If Fusion burning stops with Iron how are elements with a higher atomic number formed ?

So what about gold und silver etc. ?

Goldwaschen in Deutschland

Die ergiebigsten Gewässer, die besten Regionen!

So what about gold und silver etc. ?

If Fusion burning stops with Iron how are elements with a higher atomic number formed ?

Instead of nuclear fusion **capturing** a **proton** or **neutron** leads to the fomation new elements

There are 3 major process

- **p-Prozess** ↔ proton capture
- **s-Prozess** ↔ slow (s) neutron capture
- **r-Prozess** ↔ rapid (r) neutron capture

p-process

<u>p-process</u> \rightarrow **p** from **proton**

- by capturing protons the nucleus has a higher number of protons → new element
- in most cases a **photodesintegration** $\leftrightarrow \gamma$ -process follows (Expample Ne + $\gamma \rightarrow$ O + He)
- the higher the element ↔ the higher is the Coulomb Wall and the process becomes more difficult
- so far unusual elementes found with a maxima at ⁹²Molybdenum und ¹⁴⁴Samarium

Occurs in: Oxygen burning & Supernovae

r-process

$\underline{r\text{-}process} \rightarrow r \text{ from } rapid$

- by capturing neutrons the nucleus has a higher number of neutrons / protons→ new element/isotope
- \bullet competing process here is a β decay

$$3^{+}: p + \Delta E \rightarrow n + e^{+} + \nu \qquad \beta^{-}: n \rightarrow p + e^{-} + \nu + \Delta E$$

if
$$T_{n-capture} \ll T_{\beta-decay}$$

no β **decay** occurs and the nucleus captures another **neutron** \leftrightarrow **atoms with** <u>higher neutron</u> and mass number!

known mass number A=130-190
 r process elements ⁸⁰Se,⁸¹Br,⁸⁴Kr,¹²⁸Te,¹³⁰Te,¹²⁷I,¹⁹²Os,¹⁹³Ir,¹⁹⁶PI,¹⁹⁸Pt

Occurs in: Supernovae

s-process

$\underline{s\text{-process}} \rightarrow \underline{s} \text{ from } \underline{s\text{-low}}$

 \bullet by capturing **neutrons** the nucleus has a higher number of neutrons / protons \rightarrow new element/isotope

 \bullet competing process here is a β decay

$$\beta^{+}: p + \Delta E \rightarrow n + e^{+} + \nu \qquad \beta^{-}: n \rightarrow p + e^{-} + \nu + \Delta E$$

if
$$T_{n-capture} \ll T_{\beta-decay}$$

a β decay occurs before another **neutron** is captured \leftrightarrow **n converted to p atoms with** <u>higher proton</u> and mass number!

known mass number A=bis 210
 s process elements ⁸⁸Sr, ¹³⁸Ba, ²⁰⁸Pb, ⁸⁹Y, ⁹⁰Zr, ¹³⁹La)

Occurs in: Red Giants, Red Supergiants & AGB in shell burning region

Solve the stellar structure equations in time

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2 \rho$$

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho g$$

$$\frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{4\mathrm{ac}} \frac{\kappa \rho}{T^3} \frac{\mathrm{L}r}{4\pi r^2}$$

$$\frac{\mathrm{d}L}{\mathrm{d}r} = -\left(1 - \frac{1}{\gamma}\right) \frac{\mu m_{\mathrm{H}}}{\mathrm{k}} \frac{\mathrm{G}M}{r^2}$$

a) boundery conditions

 $\begin{array}{ll} \mbox{für } r \rightarrow 0 & M \rightarrow 0 \ , \ L \rightarrow 0 \\ \mbox{für } r \rightarrow R_{\star} & P \rightarrow 0 \ , \ \rho \rightarrow 0 \end{array}$

b) use material functionen

P(ρ ,T,Z)equation of state (most cases ideal Gas) $\kappa(\rho,T,Z)$ opacity by free free and e⁻ scattering $\epsilon(\rho,T,Z)$ energy production (most cases power law)

Input – Output

Stellar structure equations + material functionen + energy production

Input

Output

Solving the equation one integrates from the inside out as well as from the ouside in hoping that the solutions meet somewhere and are steady...
 In our first try in the1970ies we always got solutions that had
 STARS WITH CENTRAL HOLES !!! " Prof. Rudolf Kippenhahn

early 1980ties \rightarrow

early 1980ties \rightarrow

Problem SN 1987A

Progenitor star is **Sk -69° 202** and was **Blue Supergiant !!**

Stellar evolution – models with mass loss !

Now in 1990

- → added stellar winds **mass loss** !
- \rightarrow explained SN1987
- → by including mass loss the models are able to explain a blue spuergiants as final phase before the supernova Since Stars change from the red to the blue.

Stellar evolution – models with mass loss AND ROTATION

Starting in 2000

 \rightarrow model now include Mass loss and Rotation !

Stellar evolution – models with mass loss AND ROTATION

Starting in 2000

→ model now include Mass loss and Rotation

First idea and theoretical approaches already 1955

 \rightarrow no chance to caculate with the Computers at that time \rightarrow need 3D

Rev-deversite Booker

Zeitschrift für Astrophysik, Bd. 38. S. 166-189 (1955)

Kleine Veröffentlichungen der Remeis-Sternwarte Bamberg Nr. 10

Untersuchungen über rotierende Sterne

I. Die Theorie nullter Ordnung

Von

RUDOLF KIPPENHAHN, Bamberg

Mit 1 Textabbildung

(Eingegangen am 21. September 1955)

Es wird die Theorie nullter Ordnung aufgestellt, die das Rotationsgesetz extrem langsam rotierender Sterne bestimmt. Es zeigt sich, daß ein Stern nach hinreichend langer Zeit einem Rotationsgesetz zustrebt, das zwar wegen des ständigen Drehimpulsverlustes durch Strahlung nicht stationär ist, das aber vom Anfangsrotationsgesetz nicht mehr abhängt. Die Bestimmung dieses Gesetzes und die Frage, wie ein Stern aus einem beliebigen Anfangszustand heraus dieses Rotationsgesetz erreicht, führen unter vereinfachenden Annahmen (spezielle Vorschriften für den

Stellar evolution – models with mass loss AND ROTATION & MAGNETIC FIELDS !

Modells 2010+

\rightarrow model now include Mass loss and Rotation and MAGNETIC FIELDS !

Stellar evolution with rotation and magnetic fields

III. The interplay of circulation and dynamo

A. Maeder and G. Meynet

Geneva Observatory, 1290 Sauverny, Switzerland e-mail: [andre.maeder;georges.meynet]@obs.unige.ch

Abstract. We examine the effects of the magnetic field created by the Tayler-Spruit dynamo in differentially rotating stars. Magnetic fields of the order of a few 10^4 G are present through most of the stellar envelope, with the exception of the outer layers. The diffusion coefficient for the transport of angular momentum is very large and it imposes nearly solid body rotation during the MS phase. In turn, solid body rotation drives meridional circulation currents which are much faster than usual and leads to much larger diffusion coefficients than the magnetic diffusivity for the chemical species. The consequence is that the interplay of the thermal and magnetic instabilities favours the chemical transport of elements, while there would be no transport in models with magnetic field only. We also discuss the effects on the stellar interior, lifetimes and HR diagram.

Key words. stars: rotation - stars: magnetic fields - stars: evolution

Stellar evolution – models with mass loss AND ROTATION & MAGNETIC FIELDS !

Modells 2010+

 \rightarrow model now include Mass loss and Rotation and MAGNETIC FIELDS !

