Radiative Processes in Astrophysics Problem Set 2

Due date: Monday, 19 March 2001

1. Radiation quantities

- (a) Define the following monochromatic quantities:
 - intensity I_{ν}
 - mean intensity J_{ν}
 - flux \mathcal{F}_{ν}
- (b) Why is it generally more useful to know I_{ν} than \mathcal{F}_{ν} ?
- (c) For which kind of astronomical objects is it possible to measure I_{ν} directly?
- (d) Does $\mathcal{F}_{\nu} = 0$ mean that there is no radiation?

2. Flux and Intensity

- (a) Assume two detectors are standing at the same distance from a point source of radiation. What is the ratio $\mathcal{F}_2/\mathcal{F}_1$ of the measured fluxes if the detector areas are $A_1 = 10 \, \mathrm{cm}^2$ and $A_2 = 30 \, \mathrm{cm}^2$?
- (b) Now assume there is a third detector which is twice as far away from the point source and has an area of $A_3 = 10 \,\mathrm{cm}^2$. What is the ratio $\mathcal{F}_3/\mathcal{F}_1$?

3. Conversions

- (a) Are I_{ν} and I_{λ} equal for a given beam?
- (b) Show that $d\nu/\nu = -d\lambda/\lambda$.
- (c) Show that $\nu I_{\nu} = \lambda I_{\lambda}$.
- (d) Derive the expression for $B_{\lambda}(T)$ from

$$B_{
u}(T) = rac{2h
u^3}{c^2} \, rac{1}{\exp(h
u/kT) - 1}$$

4. Radiation pressure

In the most general case, radiation pressure is defined as a tensor. Under which conditions can the radiation pressure be defined as the scalar quantity

$$P_{\nu} = \frac{1}{c} \int I_{\nu} \cos^2 \theta \, d\Omega \ ?$$

Use this equation along with the Stefan-Boltzmann law to show that

$$P_{rad} = \frac{1}{3}aT^4$$

where $a = 4\sigma/c$. Again, note what assumption(s) you made.