Processing Large Data Sets: The Hunt for High-z Quasars
Kai Lars Polsterer, Peter-Christian Zinn and Fabian Gieseke
The Question

- can we efficiently find high-z quasars (z>4.8)
 - small computer / high prediction quality
- SDSS/DR6 catalogue was used
 - 300×10^6 objects observed in 5 filters (u,g,r,i,z)
 - 1×10^6 objects have spectra
 - 1×10^5 of these objects are known quasars
 - 150 of these quasars have z>4.8
 - covering 10,000 deg\(^2\) (background image: 0.14 deg\(^2\))
Common Approaches

- define plain colour criteria
 - PROs:
 - physically motivated
 - easy to reproduce in 2d diagrams
 - high completeness
 - CONs:
 - global model
 - does not work for high dimensions
 - many false positive candidates

Fan et al. 2001
Our Approach

• use k-Nearest Neighbours
 ◦ local model
 ◦ works fine in high dimensions
 ◦ does not require physical assumptions
 ◦ good reference samples available

\[\forall t_n \in T, \hat{R}_t(x) = t_n = \frac{1}{k} \sum_{\vec{x}_i \in N_k(x)} \begin{cases} 1, & t_i = t_n \\ 0, & \text{otherwise} \end{cases} \]
Finding the Nearest Neighbours

- neighbourhood search in Euclidean space
 - look-up implemented with kd-tree
- new distance to deal with measurement errors

\[
d(u, \Delta u, v, \Delta v) = \sum_{i=1}^{N} \frac{(u_i - v_i)^2}{\Delta u_i^2 + \Delta v_i^2} + (|\Delta u_i| - |\Delta v_i|)^2
\]
Classification

- 2 reference sets have been created
 - first reference set
 - all 1,258 z>4 + 1,000 medium redshift quasars
 - 1,000 galaxies + 1,000 stars + 1,500 cool stars
 - second reference set
 - all 1,258 z>4 quasars
 - 10,900 cool stars
- neighbours are stored
 - ratios can be calculated later
Redshift Estimation

- kNN regression model + selected reference set
 - 77,000 references reduced to 1,100 objects
 - optimised for $z > 4.8$
 - 4 colours used

\[
\hat{Y}(\vec{x'}) = \frac{1}{k} \sum_{\vec{x'}_i \in N_k(\vec{x'})} y_i
\]
Candidate Selection

- 4 rejection filters combined
 - coarse / redshift / cool stars / new distance
- optimised for speed
 - 1 hour / 1000 objects with first implementation
 - 37.7 years on one core
 - 2-8 seconds / 1000 objects with optimisation
 - efficient data structures
 - optimised reference sets
 - parallel execution
 - 14 hours on 8 cores
Results

- ratios optimised with all SDSS objects with spectra
 - 50% of all known high-z quasars are recovered
 - 40% are false positives
 - only 0.1% of the cool stars pass the rejection stage
- 122,000 candidates are returned
The Answer

- 3 candidates observed
 - with SCORPIO @ 6m BTA

![Normalized Flux vs. Wavelength](image)