Long-lived excited levels of multiply charged ions
Atomic lifetime measurements at the Heidelberg heavy-ion storage ring TSR

For an explanation of the measurement technique, see Passive lifetime measurement technique at TSR

Atomic lifetime measurements on
E1 intercombination transitions
at the Heidelberg heavy-ion storage ring TSR

Isolectronic sequence Ion Level Lifetime Observation Reference
Be I B+ 2s2p 3Po197.65±0.5 msUV9
C2+9.714±0.013 msVUV5
N3+2.0±0.3 ms ionization 3,4,16
1.73±0.01 msVUV24
O4+0.458±0.015 ms ionization 3,4,16
0.432±0.009 msVUV24
B IC+2s2p2 4P1/27.95±0.07 msUV10
C+2s2p2 4P3/2104.1±0.5 msUV10
C+2s2p2 4P5/222.05±0.07 msUV10
N2+2s2p2 4P1/21.32±0.05 msUV10
N2+2s2p2 4P3/213.9±0.2 msUV10
N2+2s2p2 4P5/23.3±0.07 msUV10
C IN+ 2s2p3 5So25.88±0.03 msUV10
O2+ 1.25±0.02 msVUV12


Atomic lifetime measurements on
electric-dipole - forbidden transitions
at the Heidelberg heavy-ion storage ring TSR

Isolectronic sequence Ion Level Lifetime Observation Reference
He I Li+ 1s2s 3S152.2±5.0 sDR8
Be2+ 1.80±0.05 sEUV/residual gas ionization20
B3+ 149.8±0.45 msDR2
C4+ 20.589±0.042 msDR1,2
N5+ 3.905±0.05 msDR1,2
B ICl12+2s22p 2Po3/221.2±0.6 msvis18
Ti17+0.627±0.010 msVUV11
C IN+ 2s22p2 1S0910±220 msvis25
O2+ 530±25 msUV/vis12
F3+304±5 msUV12
Ne4+128±16 msUV31
Si8+2s22p2 1D238.3±0.3 msVUV/UV7
P9+17.74±0.035 msVUV/UV29
S10+8.684±0.009 msVUV/UV29
N ISi7+2s22p3 2Po1/223.5±1.0 msUV12
2s22p3 2Po3/29.63±0.7 msUV12
P8+2s22p3 2Po1/210.17±0.12 msUV29
2s22p3 2Po3/24.22±0.10 msUV12
S9+2s22p3 2Po1/25.20±0.15 msUV29
2s22p3 2Po3/22.10±0.06 msUV12
O IF+ 2s22p4 1S0423±10 msUV13
Ne2+ 213±4 msVUV/UV14
Si6+ 2s22p4 1D263.6±0.7 msVUV/UV7
P7+ 28.63±0.08 msVUV/UV29
S8+ 13.79±0.05 msVUV/UV29
F ISc12+2s22p5 2Po1/21.00±0.03 msUV9
Ti13+0.513±0.010 msUV11
Mg ICo15+3s3p 3Po2 13.6±1.8/5.5±2.5 msvis28
Ni16+ 7.672±0.015 msvis28
63,65Cu17+3s3p 3Po2 4.04±0.02 msUV28
63Cu17+3s3p 3Po0 EUV28
65Cu17+ EUV28
Al INi15+3s23p 2Po3/2 5.27±0.07 msUV28
3s3p3d 4Fo9/2 10.0±0.7 msUV28
Cu16+3s23p 2Po3/2 3.05±0.145 msUV30
Cu16+3s3p3p 4Fo7/2 5.51±1.56 mscascade30
Si ICl3+3s23p2 1S0 166±8.4 msUV30
Mn11+3s23p2 1D2 13.8 ±0.3 msUV30
Fe12+ 8.1±0.2 msUV17
Co13+ 3.69±0.21 msUV27
Ni14+ 2.25±0.05 msUV27
Cu15+ 1.43±0.07 msUV30
Cu15+3s23p2 3P1 8.20±0.15 msUV30
Ge18+ 1.85±0.41 msUV30
Cu15+3s23p2 3P2 32.2±0.2 mscascade30
Ge18+ 14.3±4.1 mscascade30
Fe12+3s23p3d 3Fo4 9.9±0.4 mscascade19
Co13+ 6.59±0.24mscascade27
Ni14+ 4.85±0.12mscascade27
Cu15+ 3.31±0.04mscascade30
P IMn10+3s23p3 2Po3/22.39±18 msUV30
3s23p3 2Do3/234.6±0.3 msUV30
3s23p3 2Do5/2735±10 msUV30
Fe11+3s23p3 2Po1/24.1±0.12 msUV17
3s23p3 2Po3/21.70±0.02 msUV17
3s23p3 2Do3/218.0±0.1 msUV17
3s23p3 2Do5/2306±10 msUV17
Co12+3s23p3 2Do3/210.9±0.1 msUV26
3s23p3 2Do5/2151±1 msUV26
Ni13+3s23p3 2Do3/25.3±0.05msUV26
3s23p3 2Do5/270±1 msUV26
Cu14+3s23p3 2Do3/2 3.02±0.03 msUV30
3s23p3 2Do5/2 35.0±0.3 msUV30
S IAr2+3s23p4 1S0145±5 msUV15
Mn9+3s23p4 1D220.9±0.5 msUV30
Fe10+11.05±0.1 msUV17
3s23p33d 3Go468±4 msUV17
Co11+3s23p4 1D26.91±0.05 msUV27
Ni12+4.06±0.12 msUV27
3s23p4 3P16.50±0.15 msgreen23
Cu13+3s23p4 1D2 2.69±0.05 msblue30
3s23p4 3P13.60±0.12 msblue23
Cl IFe9+3s23p4 (3P) 3d 2F7/217.0±1.7 msVUV17
3s23p4 (1D) 3d 2F7/24.9±0.4 msVUV/UV17
3s23p43d 4F7/270±25 msUV17
3s23p4 (3P) 3d 4F9/2110±5 msUV19
Fe9+3s23p5 2P1/214.4±0.14 msred21,22
Co10+7.66±0.04 msgreen26
Ni11+4.17±0.06 msblue21
Cu12+2.37±0.01 msUV21
Ar IFe8+3s23p53d 3D329±3 msUV19
3s23p53d 3D210.5±1 msUV19
3s23p43d 1F36.9±0.3 msUV19
Ca IFe6+3s23p63d2 1S029.6±1.8 msUV19

References
1) H. T. Schmidt, P. Forck, M. Grieser, D. Habs, J. Kenntner, G. Miersch, R. Repnow, U. Schramm, T. Schüssler, D. Schwalm, and A. Wolf, Phys. Rev. Lett. 72, 1616 (1994).
2) H. T. Schmidt, Ph.D. thesis, Aarhus 1994.
3) J. Doerfert, E. Träbert, and A. Wolf, Hyp. Int. 99, 155 (1996).
4) J. Doerfert, E. Träbert, J. Granzow, A. Wolf, J. Kenntner, D. Habs, M. Grieser, T. Schüssler, U. Schramm, and P. Forck, P., Nucl. Instrum. Meth. B 98, 53 (1995).
5) J. Doerfert, E. Träbert, A. Wolf, D. Schwalm, and O. Uwira, Phys. Rev. Lett. 78, 4355 (1997).
6) E. Träbert, A. Wolf, E. H. Pinnington, J. Linkemann, E. J. Knystautas, A. Curtis, N. Bhattacharya, and H. G. Berry, Phys. Rev. A 58, 4449 (1998).
7) E. Träbert, A. Wolf, E. H. Pinnington, J. Linkemann, E. J. Knystautas, A. Curtis, N. Bhattacharya, and H. G. Berry, Can. J. Phys. 76, 899 (1998).
8) A. A. Saghiri, J. Linkemann, M. Schmitt, D. Schwalm, A. Wolf, T. Bartsch, A. Hoffknecht, A. Müller, W. G. Graham, A. D. Price, N. R. Badnell, T. W. Gorczyca, and J. A. Tanis, Phys. Rev. A 60, R3350 (1999).
9) E. Träbert, A. Wolf, J. Linkemann, and X. Tordoir, J. Phys. B 32, 537 (1999).
10) E. Träbert, A. Wolf, X. Tordoir, E. J. Knystautas, and G. Gwinner, J. Phys. B 32, L491 (1999).
11) E. Träbert, G. Gwinner, A. Wolf, X. Tordoir, and A. G. Calamai, Phys. Lett. A 264, 311 (1999).
12) E. Träbert, A. G. Calamai, J. D. Gillaspy, G. Gwinner, X. Tordoir, and A. Wolf, Phys. Rev. A 62, 022507 (2000).
13) A. G. Calamai, G. Gwinner, X. Tordoir, E. Träbert, A. Wolf, Phys. Rev. A 61, 062508 (2000).
14) E. Träbert, A. Wolf, X. Tordoir, E. H. Pinnington, E. J. Knystautas, G. Gwinner, and A. G. Calamai, Can. J. Phys. 79, 145 (2001).
15) E. Träbert and G. Gwinner, Phys. Rev. A 65, 014501 (2002).
16) E. Träbert, A. Wolf, and G. Gwinner, Phys. Lett. A 295 44 (2002).
17) E. Träbert, G. Gwinner, A. Wolf, E. J. Knystautas, H.-P. Garnir, and X. Tordoir, J. Phys. B 35, 671 (2002).
18) E. Träbert, P. Beiersdorfer, G. Gwinner, E. H. Pinnington, A. Wolf, Phys. Rev. A 66, 052507 (2002).
19) E. Träbert, A. G. Calamai, G. Gwinner, E. J. Knystautas, E. H. Pinnington, and A. Wolf, J. Phys. B: At. Mol. Opt. Phys. 36, 1129 (2003).
20) E. Träbert, G. Gwinner, E. J. Knystautas, and A. Wolf, Can. J. Phys. 81, 941 (2003).
21) E. Träbert, G. Saathoff, and A. Wolf, J. Phys. B: At. Mol. Opt. Phys. 37, 945 (2004).
22) E. Träbert, Astron. Astrophys. 415, L39 (2004).
23) E. Träbert, G. Saathoff, and A. Wolf, Eur. Phys. J. D 30, 297 (2004).
24) E. Träbert, E. J. Knystautas, G. Saathoff, and A. Wolf, J. Phys. B: At. Mol. Opt. Phys. 38, 2395 (2005).
25) E. Träbert, G. Saathoff, and A. Wolf, Physica Scripta 72, 35 (2005).
26) E. Träbert, S. Reinhardt, J. Hoffmann, and A. Wolf, J. Phys. B: At. Mol. Opt. Phys. 39, 945 (2006).
27) E. Träbert, J. Hoffmann, C. Krantz, A. Wolf, Y. Ishikawa, and J. A. Santana, J. Phys. B: At. Mol. Opt. Phys. 42, 025002 (2009).
28) E. Träbert, M. Grieser, J. Hoffmann, C. Krantz, S. Reinhardt, R. Repnow, A. Wolf, and P. Indelicato, New. J. Phys. 13, 023017 (2011).
29) E. Träbert, M. Grieser, J. Hoffmann, C. Krantz, R. Repnow, and A. Wolf, Phys. Rev. A 85, 052508 (2012).
30) E. Träbert, M. Grieser, C. Krantz, R. Repnow, A. Wolf, F. Diaz, Y. Ishikawa, and J. A. Santana, J. Phys. B 45, (in print 2012).
31) E. Träbert, M. Grieser, R. von Hahn, C. Krantz, R. Repnow, A. Wolf, New J. Phys. 14, 023061 (2012).

Recent reviews put the above work into context and also cover more measurements of such long atomic level lifetimes, using a variety of ion trap types.
Physica Scripta 61, 257 (2000)
Physica Scripta T 100, 88 (2002)
Can. J. Phys. 80, 1481 (2002)

This way to the


University of California Lawrence Livermore National Laboratory Electron Beam Ion Trap
Livermore EBIT lifetime papers
Livermore EBIT lifetime results
E. Träbert Home page with further references to lifetime measurements

Page updated on 13 Dec 2012